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The world is drowning in data...
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The world is drowning in data...

...access to information is based on
recommendations
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Recommending news feeds

* | ots of venues (and articles) ... challenging to find the
few articles that you are actually interested in reading
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Recommending news feeds

* Training examples and corresponding ratings

. e 3 Member of Afghan
Romney Tells U.S. h'lu.y Scrap Candidate in Egypt Peace Council Is
Evangelicals Their Costly Efforts to Makes tder” Assassinated
’ . Train Iraqi Police NS B8 Susigor's R ;
n ews Values Are His, Too ‘ for President -
A AR Force KAREEN \ +
Speaking st Liderty Usiversity, TR e e r
Nzt Romney sosght to quell Settons 8 mkibElon-Acler i -
° .- - ——— s M
CONOC TS ADONE CVaIgeixal training oot Dy the ond of 2043
dedense of Christlan values and e .“"-’-',:_ )

N Armericn » waa rg
faith in public ife N shr

L1 L9

rating + | -1 + | -1

Y1 Y2 Y3 Ya

Wednesday, May 16, 12



Recommending news feeds

* Training examples and corresponding ratings
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Recommending news feeds

* Training examples and corresponding ratings

feature

vectors  ?(Z1) ¢(r2) P(x3) P(x4)

rating + | -1 + | -1
Y1 Y2 Y3 Y4
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Articles as feature vectors

* Does the word order matter?

White House officials
consulted with the
Justice Department
in preparing a list of
U.S. attorneys who
would be removed.

(NYT 03/13/07)

X
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Articles as feature vectors

* Does the word order matter?

the with

White House officials House officials be removed

3ons_ulted with the bag Of who would st
ustice Department —_— .

in preparing a list of in _

U.S. attorneys who WO rd S Department  a Justice

would be removed. of attorneys

White ) consulted
preparing
(NYT 03/13/07)

X
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Does the word order matter?

* Not for every task...

100
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1 2 3 4 no limit
Presentation Time (sec)
(Wolf et al. 2006)
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Articles as feature vectors

the with

White House officials b f House officials be removed
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Justice Department —
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Articles as feature vectors

the’ with

White House officials b f House officials bé removed
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Justice Department — U.S.
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White House officials
consulted with the
Justice Department
in preparing a list of
U.S. attorneys who
would be removed.

(NYT 03/13/07)

X
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Articles as feature vectors
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Recommending news feeds

* A few examples of articles that we'd like to read (+1)

* Potentially a large number of unwanted articles (-1)
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Recommending news feeds

* A few examples of articles that we'd like to read (+1)

* Potentially a large number of unwanted articles (-1)

linear preferences y(x) =0 - ¢(x)+ b

0 | politics
. 1 Justice
. _ 0 government
0 president
1 House
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Recommending news feeds

* Why is the problem challenging?

Wednesday, May 16, 12

lots of possible words

only a small subset appears in any particular article

most frequent words are not content words

meaningful classes of articles are typically tied to words that

occur relatively infrequently

- any two articles in the same meaningful class may have only a

few content words in common

R O O O
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Some tricks

* We can transform the counts in the feature vectors so
as to emphasize more “relevant” words

* TFIDF weighting

TF IDF
e e /—%

freq. of word i # of docs
Ow(x) = ( ; ) - log

w 1n doc. X

 # of docs with word w |
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Recommending news feeds

linear preferences y(z) =60 - ¢(x)+ b

0 politics
. 1 Justice
R _ 0 government
0 president
1 House
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Recommending news feeds

linear preferences y(z) =60 - ¢(x)+ b

0 | politics
. 1 Justice
A _ 0 government

0 president

1 House

o
T
2
J(0,b) = E (ye — 0 - ¢(x;) — b)
t=1 squared prediction

sum over the  error on each example
training examples
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Linear regression, complexity

* We can easily obtain (too) complex regression functions

5

linear
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" 5th order polynomial
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Recommending news feeds

linear preferences y(z) =60 - ¢(x)+ b

0 | politics
. 1 Justice
A _ 0 government

0 president

1 House

o
T
2
J(0,b) = E (ye — 0 - ¢(x;) — b)
t=1 squared prediction

sum over the  error on each example
training examples
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Recommending news feeds

linear preferences y(z) =60 - ¢(x)+ b

0 politics
. 1 Justice
A _ 0 government
0 president
1 House
(o)
o
n
_ 2 2
J(0,0) = > (yr — 0 ¢(x1) — b) NI
t=1 squared prediction
sum over the  error on each example regularization term

training examples

Wednesday, May 16, 12



Recommending news feeds

linear preferences y(z) =60 - ¢(x)+ b
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Today’s topics

* Collaborative filtering
- setup, regression formulation

- matrix factorization
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Collaborative filtering

* Consider the problem of predicting how n users rate m

movies
m movies

* Known ratings (training 515 5

data) are arranged in a 315111344 |4

partially filled nxm data 1

DO
DO

matrix 5 5

* The goal is to predict

N users
I
I

the remaining entries
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Collaborative filtering

* Consider the problem of predicting how n users rate m

movies

* Known ratings (training
data) are arranged in a
partially filled nxm data
matrix

* The goal is to predict
the remaining entries

* Basic intuition: similar
users can complete
each others experience
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Collaborative filtering

* Consider the problem of predicting how n users rate m

movies

* Known ratings (training
data) are arranged in a
partially filled nxm data
matrix

* The goal is to predict
the remaining entries

* Basic intuition: similar
users can complete
each others experience
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Collaborative filtering

* Consider the problem of predicting how n users rate m

movies

* Known ratings (training
data) are arranged in a
partially filled nxm data
matrix

* The goal is to predict
the remaining entries

N users

* Basic intuition: similar
users can complete
each others experience

* Key part of the problem is
to couple the estimation
tasks across users / movies
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Collaborative filtering

* Our goal is to fill the data matrix, i.e., accurately predict

values for unobserved entries
m movies

* Computational issues: 55 5
- a typical matrix is very large, 351|344 4
e.g.,n=400K, m=17K 412 2
* Statistical issues: O O
. ol 4] 4
- the matrix is very sparse, &
o . 4 4 4
e.g., | % known ratings >

- ratings may be diverse 1

and under-sampled (?)

* Formulation issues: 5 4

- many interpretations for 3 3 3

missing entries
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Single user predictions

* We could try to solve the problem separately for each
user using simple linear regression models for ratings

m movies

1 v _@j Om
useri | O 41511 4 dim(0;) = dim(@;) = d

Ji(0:) = Z (Yij — 0i- 05)° + A|6:°

LN T

known entries  rating user i feature vector
for user i matrix parameters for movie |
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Single user predictions

* We could try to solve the problem separately for each
user using simple linear regression models for ratings

m movies

1 v _@j Om
useri | O 41511 4 dim(0;) = dim(@;) = d

Ji(0:) = Z (Yij — 0i- 05)° + A|6:°

LN T

known entries  rating user i feature vector
for user i matrix parameters for movie |

* But
- reasonable feature vectors may be hard to obtain
- each user may have only a few ratings

- no help from similar users
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Matrix factorization

* We can approximate the rating matrix as a product of
two lower rank matrices

515 5
3(5(13 44| |4 .
1]2 2 X V&
5 5
E 1 .
1 1 ~
5] [4]5]1] (4) ~ d X m
4 7
5 W
5 1
50 |/ |5] |3
/
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Matrix factorization

* We can approximate the rating matrix as a product of
two lower rank matrices

515 5
3(5|1]34|4] |4 -
1]2 2 X V&
5 5
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1 4 ~
51 [4]5]1] (4) ~ d X m
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50 |/ |5] |3
/ n X d
Yij =~ [UV'],
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Matrix factorization

* We can approximate the rating matrix as a product of
two lower rank matrices

515 5
3[5(1[3]4[4] [4 -
102 2 X V&
5 5
1[5 1 .
1 1 ~
5] |4]5]1] (4) ~ d X m
4 7
5 W
5 1
50 |/ |5] |3
/

n X d

Yi; ~ [UV'];;

the only complexity

1 (Yij — UVT]Z]) | control would be

AN the rank d
observed entries S R

7
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Matrix factorization

* We can approximate the rating matrix as a product of
two lower rank matrices

515 5
3(5(13 44| |4 .
1]2 2 X V&
5 5
E 1 .
1 1 ~
5] [4]5]1] (4) ~ d X m
4 7
5 W
5 1
50 |/ |5] |3
/

n X d

Yi; ~ [UV'];;

min > Y= UV 2+ AU+ AV IIE
17€D
Vckserved entries

7
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Matrix factorization

* The matrix factorization approach can be interpreted as
iteratively solving regression problems for users/movies

o1 @j Dm
05]5 5
3065|1344 |4 -
1]2 2 X V&
5 5
1[5 1 .
1 4 ~
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0, 50 1/1 5] |3
/
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Matrix factorization

* The matrix factorization approach can be interpreted as

iteratively solving regression problems for users/movies
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Matrix factorization

* The matrix factorization approach can be interpreted as
iteratively solving regression problems for users/movies

@1 @j _@m
0,55 5
35113144 |4
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45
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Matrix factorization

* The matrix factorization approach can be interpreted as
iteratively solving regression problems for users/movies

'
o1 @j Om ’ V,
655 ~ 5 " )
B 3/5[1[31|4]4 4 Ql
112 5 X o1 .. @) ... Om
5 5 :
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Matrix factorization cont’d

* We can approximate the rating matrix as a product of
two lower rank matrices

515 5
3(5(13 44| |4 .
1]2 2 X V&
5 5
E 1 .
1 4 ~
5] [4]5]1] (4) ~ d X m
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CF and the Netflix Price

* Progress using different matrix factorization methods

0.91

=== Pain

m \ith biases

m= \Nith impllicit feedback

O I 00 With temporal dynarmics v.1)
With temporal dynamics (v.2)

0.905

S
Ll
(Va)
=
o
089 ...................................................................................................................................................
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200 500 20 T
O e 2 S0 00
' - 1,500
0.875
10 100 1,000 10,000 100,000

Millions of parameters

(Koren et al.,, 2009)

* (to win the price, one had to combine hundreds of
different methods)
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Matrix factorization

* We try to find the best rank d approximation to the
rating matrix based on the observed entries

. 1 A A
minimize Z (Yi; — [UV'];5) + §HUH%‘ T §HVH%’

ijeD
where U isn xdand Vism x d

- rank d can be used for complexity control along with the
regularization parameter lambda

- the optimization problem is not jointly convex in U and V.
However, it is convex in U if we fixV, and vice versa

- an alternating minimization algorithm, i.e., iteratively solving
user / movie regression problems, may get stuck in a locally
optimal solution (initialization is important)

- algorithms that sequentially add simple rank-1 components at
a time are typically better.
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