Problem 3: Search (35 points)

Figure 2 is a graph to be searched, starting at A and ending at G. The A values are the heuristic
estimates, and the numbers on the edges are the actual costs. Assume that the children of a node are
ordered in alphabetical order; also use the alphabetical order to break ties, if necessary.

h=7 h=2

h=0

h=6 h=2

Figure 2: Search graph.
Part A (20 points).

Al (15 points).

Perform an A* search with an expanded list. Fill in the following table. Which path is returned?

Expanded Node | Partial Path Total estimated cost
leading to the node | using partial path

A A .7

C AC [

p AD 7

p ABD [+
2 ACG g

Path returned:

kG

A2 (5 points).
Did A* search with expanded list return the optimal path? Explain why in terms of the admissibility and/or
consistency of the heuristics.
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Part B (5 points).

B1 (4 points). _
Perform a depth-first search, without using any visited or expanded lists. Show the sequence of expanded

nodes. Which path is returned?

4B

B2 (1 points).
Path returned:

ABCDG

Part C (5 points).

C1 (4 points).
Perform a uniform cost search, using an expanded list. Show the sequence of expanded notes. Which path

is returned?

ABCOG

C2 (1 points).
Path returned:

ABC G



Part D (5 points).

D1 (4 points).
Of the search algorithms covered in class, which one requires the smallest number of expansions before
returning a path? Which path is returned?

B@gé -%W;é fé‘m/(/h

D2 (1 points).
Path returned:

£



Problem 4: Game Search (22 points)

Part A (6 points).

You are watching two people play a game called Mini-Four, which is just like Connect Four, but played
on a smaller (4x4) board. In this game, the black player and white player alternate dropping a piece into
one of the four columns; the piece falls into the lowest row not already occupied. If a player can get four
pieces of the same color in a row, he wins.

Figure 3: The in-progress game.

A1 (1 points).
The game has already progressed to the point seen in Figure 3. Black went first, and so it is now white’s
turn to move. You notice that white has a move that guarantees a win. Determine and circle the move white

should make to guarantee victory.

Column 1 Column 3 Column 4
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A2 (5 points).

Mini-Four is a very small game, and so easy to exhaustively search. As the size of the board gets bigger,
even just to the standard 6x7, this becomes tough. For Minimax or a-8 to work on these big games, we
must stop early and use a static evaluator on non-final board states, as you just did in the last part.

We want you to design a static evaluator for these Mini-Four-like games. That is, you should give a
function or algorithm that takes in a board state (the location and color of the pieces) and gives back a
number. The number should be large when the board is good for the current player, and small when it’s
bad. If it makes it easier for you to write, you may assume the current player is white.

Please remember that the static evaluator should only consider the current state. You don’t need to look
into the future; that’s what Minimax does for you!
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Part B (16 points).

You write two programs to play Mini-Four, one using Minimax and one using -/ from left to right. We
provide some arbitrary game search tree they’re both trying to evaluate in Figures 4 and 5. The leaves are
labeled with their static evaluation values.

B1 (7 points).

Use Minimax to evaluate the game tree as a maximizer. Fill in the blanks in Figure 4 with each node’s
Minimax value.

mey

Column 1

v

Figure 4: The Minimax search tree.

B2 (1 points).
What move does Minimax say the maximizer should make?

Column1 Column 2 Column 4

12



B3 (7 points).
Use a-f to evaluate the game tree as a maximizer. Work left to right. Cross out nodes that a-3 does not

evaluate (both the blank ones and the ones we’ve given values for). Fill in the blanks in Figure 4 with each

node’s Minimax value. v=>0 Klo
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Figure 5: The o~ search tree.

B4 (1 points).
What move does -3 say the maximizer should make?

Column1 Column 2 Column 4
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Problem 6: Constraint Satisfaction (18 points)

Misters White, Orange, Pink, and Brown are planning a crime while sitting in a small diner. 4 chairs
labeled 1,2,3 and 4 fit around the diner’s table.

You will model where each person sits as a constraint satisfaction problem. The variables will be the
diners, {(W)hite, (O)range, (P)ink, (B)rown}. The domain for each is {1,2,3,4}. Chair pairs 1 and 2, 2
and 3, 3 and 4, and 4 and 1 are adjacent to each other. Chairs 1 and 3 are across from each other, as are

chairs 2 and 4.
The criminal masterminds are petty and finicky, and this puts constraints on where they can sit.

1. No two people can sit in the same chair.

2. Mr. Pink will only sit in chair 3.

3. Mr. White will not sit across from Mr. Pink.

4. Mr. Orange will to sit adjacent to Mr. Pink.

5. Mr. Brown will only sit across from Mr. White.

Part A (4 points).
Using the constraints, perform full constraint propagation on this seating problem starting with domains of
{1,2, 3,4} for each variable B, P, W, and O. List the domains of each variable after full constraint propagation.

*B= 0d 43
ep=47%
o W= g&\‘{’(ﬁ

e 0= %&\L{’%

Part B (2 points).
Does full constraint propagation find a solution to this problem? Is there a solution to this problem? Explain.

No, hreausg e ave m;\y z valid /Mt-u;/&q‘or 3ngmﬂb;'
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Part C (4 points).
Mr. Brown now will only sit adjacent to Mr. White instead of across from him. After full constraint
propagation, now what are the domains for each person?

SOy
oP= %)‘5
o W= §02\\{'L5

«0= %J\\L%
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Part D (4 points).

Using the variable order B, P, W, O, and starting with the domains from the above full constraint propation,
show the sequence of variable assignments during a pure backtracking search. Assign chair values in numerical
order.

>

Part E (4 points).
Do the same as the previous problem, except this time show the sequence of variable assignments during
backtracking with forward checking.

:
|
’9
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Problem 7: Search and CSP (27 points)

Part A (15 points).

Consider the following search problem formulation with finitely many states:
States: there are d + 2 states: {S;, s} U {s1,...,3q}
Initial state: s,
Successor function: Succ (s) generates at most b successors
Goal test: s, is the only goal state
Step cost: each step has a cost of 1

A1 (2 points).
Suppose an optimal solution has cost n. If the goal is reachable, what is the upper bound on n?

Ndtl

A2 (2 points).

Suppose we must solve this search problem using Breadth-First Search, but with limited memory. Specifically,
assume we can only store k states during search. Give a bound on n for which the search will fit in the
available memory.

hiﬂ&gbK

A3 (2 points).
Would any other search procedure allow problems with substantially deeper solutions to be solved? Either
argue why not, or give a method along with an improved bound on n.

K
b=

N <
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A4 (5 points).

If we knew the exact value of n, we could formulate a CSP whose complete assignment specifies an optimal
solution path (X, X1,...X,) for this search problem. State binary and unary constraints which guarantee
that a satisfying assignment is a valid solution:

Variables: Xo, X1....,X,

Domains: Dom(X;) = {ss,8,} U {s1,...,8a}
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A5 (4 points).
After reducing the domains of any variables with unary constraints, suppose we then make all arcs X; — X;_;

consistent, processed in order from i = 1 to n. Next, we try to assign variables in reverse order, from X,, to
Xy, using backtracking DFS. Why is this a particularly good variable ordering?
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Part B (12 points).

Each problem is worth 2 points. Provide & short explanation that justifies your answer. (Without such
explanation, you will not get credit for your answers.)

B1 (2 points).

If a search method is guaranteed to find an optimal solution on trees, then that method is also guaranteed
find an optimal solution when applied to general graphs.

Mo A¥ seasch with admpsible /non~consis tent hew€ Scoes s
B2 (2 points). sipmil  on tree bat not &R fm)o%

An optimal solution path for a search problem with positive costs will never have repeated states.
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B3 (2 po:lnts). OW‘LQ s 0 ludv Vi
Admissible heuristics are always more effective than inadmissible ones. .
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B4 (2 poz'nts). 90m+f0?/7 { ?b *: W}/)ye ”0f #Uh?ﬂe i
If one search heuristic i (s) is admissable and another one hy(s) is inadmissable. then hs(s) = min(hi(s), ha(s))
will be admissable.

yes, let ackual wst fom S b G he AE). ki) SHE) R
B5 (2 points). h)-l}) 7H(5} b (9) </7’-L5) s /15 (5): min (h,(S)/ h’fs)):/tl;{.

Alpha-beta pruning can alter the computed minimax value of the root of a game tree. ) )’W ( 5) 5 oa 4m 175 ; L(

A/o. MP/M Ld‘o P)’vtmlflj Ml NV eV w;yg
B6 (2 points). £ sobudron .

When doing alpha-beta pruning on a game tree which is traversed from left to right, the leftmost branch
will never be pruned.

You m(wa)/s need b0 see what a nede has got besfore

}/Du canh prung,

THE END!



