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6.034 Notes: Section 4.1

Slide4.1.1
We will now turn our attention to artificial neural nets, sometimes also called "feedforward nets".

The basic ideain neural netsis to define interconnected networks of simple units (let's call them
“artificial neurons") in which each connection has aweight. Weight w;; is the weight of the ith input
into unit j. The networks have some inputs where the feature values are placed and they compute one or
more output values. The learning takes place by adjusting the weights in the network so that the desired
output is produced whenever a sample in the input data set is presented.

Slide4.1.2
Single Perceptron Unit
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Slide4.1.3

A perceptron unit basically compares aweighted combination of its inputs against a threshold value and
then outputs a 1 if the weighted inputs exceed the threshold. We use our trick here of treating the
(arbitrary) threshold asiif it were aweight (wg) on aconstant input (Xo) whose valueis-1 (note the signis
different from what we saw in our previous treatment but the idea is the same). In this way, we can write
the basic rule of operation as computing the weighted sum of all the inputs and comparing to 0.

The key observation is that the decision boundary for a single perceptron unit is a hyperplane in the
feature space. That is, it isalinear equation that divides the space into two half-spaces. We can easily see
thisin two dimensions. The equation that tells us when the perceptron's total input goesto zero isthe
equation of aline whose normal is the weight vector [w; w,]. On one side of thisline, the value of the
weighted input is negative and so the perceptron's output is 0, on the other side of the line the weighted
input is positive and the output is 1.

We have seen that there's a simple gradient-descent algorithm for finding such alinear separator if one
exists.

Artificial Neural Networks
(Feedforward Nets)

6.034 - Spring 03 « 1 4
We start by looking at asimpler kind of "neural-like" unit called a per ceptron. Thisiswhere the
perceptron algorithm that we saw earlier came from. Perceptrons antedate the modern neural nets.
Examining them can help us understand how the more general units work.
Linear Classifier
Single Perceptron Unit
h(x) = (W - X + b) = 6(W - X)
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Slide4.1.4
Beyond Linear Separability
Since a single perceptron unit can only define asingle linear boundary, it islimited to solving linearly
separable problems. A problem like that illustrated by the values of the XOR boolean function cannot be
solved by a single perceptron unit.

Not linearly
separable
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Slide4.15
Beyond Linear Separability

We have aready seen in our treatment of SVMs how the "kernel trick” can be used to generalize a
perceptron-like classifier to produce arbitrary boundaries, basically by mapping into a high-dimensional
space of non-linear mappings of the input features.

Not linearly
separable

6.034 - Spring 03 + § 4

. . Slide4.1.6
Beyond Linear Separability
We will now explore a different approach (although later we will aso introduce non-linear mappings).
What about if we consider more than one linear separator and combine their outputs; can we get a more
L powerful classifier?
0
Not linearly 0
separable
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Slide4.1.7

Multi-Layer Perceptron
The answer is yes. Since a single perceptron unit is so limited, a network of these units will be less
limited. In fact, the introduction of "hidden" (not connected directly to the output) unitsinto these
networks make them much more powerful: they are no longer limited to linearly separable problems.

What these networks do is basically use the earlier layers (closer to the input) to transform the problem
into more tractable problems for the latter layers.

input hidden hidden output

e More powerful than single layer.

e Lower layers transform the input problem into more
tractable (linearly separable) problems for subsequent

layers.
6.034 - 5pring 03 + 7 4
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XOR Problem
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produce a zero output. Thisis shown in the shaded column in the table.

Slide4.1.9

Looking at the second decision boundary we see that three of the training points (except for the one with
feature values (0,0)) are in the half space that the normal pointsinto. These points have a positive
distance and thus a one output from the perceptron unit. The other point has negative distance and

produces a zero output. Thisis shown in the shaded column in the table.

XOR Problem
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Slide4.1.11

It turns out that a three-layer perceptron (with sufficiently many units) can separate any data set. In fact,
even atwo-layer perceptron (with lots of units) can separate almost any data set that one would seein

practice.

However, the presence of the discontinuous threshold in the operation means that there is no simple local
search for agood set of weights; oneis forced into trying possibilitiesin a combinatorial way.

The limitations of the single-layer perceptron and the lack of agood learning algorithm for multi-layer
perceptrons essentialy killed the field of statistical machine learning for quite afew years. The stake
through the heart was a slim book entitled "Perceptrons’ by Marvin Minsky and Seymour Papert of MIT.

Slide4.1.8

To see how having hidden units can help, let us see how atwo-layer perceptron network can solve the
XOR problem that asingle unit failed to solve.

We see that each hidden unit definesits own "decision boundary" and the output from each of these units
isfed to the output unit, which returns a solution to the whole problem. Let's look in detail at each of
these boundaries and its effect.

Note that each of the weights in the first layer, except for the offsets, has been set to 1. So, we know that
the decision boundaries are going to have normal vectors equal to [1 1], that is, pointing up and to the
right, as shown in the diagram. The values of the offsets show that the hidden unit labeled o, has alarger
offset (that is, distance from the origin) and the hidden unit labeled o, has a smaller offset. The actual
distances from the line to the origin are obtained by dividing the offsets by sgrt(2), the magnitude of the
normal vectors.

If we focus on the first decision boundary we see only one of the training points (the one with feature
values (1,1)) isin the half space that the normal pointsinto. Thisisthe only point with a positive
distance and thus a one output from the perceptron unit. The other points have negative distance and

XOR Problem

0
Not linearly ~N
separable 0y
3
0, -1
Woi1 =3/2 wyy=wp=1 X1| X2|01|g|
Wop = 1/2 Wy = Wp =1
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Slide4.1.10

On the lower right, we see that the problem has been mapped into alinearly separable problem in the
space of the outputs of the hidden units. We can now easily find alinear separator, for example, the one
shown here. This mapping is where the power of the multi-layer perceptron comes from.

Multi-Layer Perceptron Learning
e Any set of training points can be separated by a
three-layer perceptron network.

¢ “Almost any” set of points separable by two-layer
perceptron network.

* But, no efficient learning rule is known.

6.034 - Spring 03 + 11 (E
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Slide4.1.12

Multi-Layer Perceptron Learning

. . A natural question to ask is whether we could use gradient descent to train a multi-layer perceptron. The

* Any set of training points can be separated by a answer is that we can't as long as the output is discontinuous with respect to changes in the inputs and the
three-layer perceptron network. weights. In a perceptron unit it doesn't matter how far a point is from the decision boundary, you will till

¢ “Almost any” set of points separable by two-layer get a0 or a 1. We need a smooth output (as afunction of changesin the network weights) if we're to do
perceptron network. gradient descent.

* But, no efficient learning rule is known.

e Could we use gradient ascent/descent?

* We would need smoothness: small change in
weights produces small change in output.

e Threshold function is not smooth.

6.034 - Spring 03 » 12 ‘4

Slide4.1.13 . .
Multi-Layer Perceptron Learning
Eventually people realized that if one "softened" the thresholds, one could get information as to whether

achange in the weights was helping or hurting and define alocal improvement procedure that way. * Any set of training points can be separated by a
three-layer perceptron network.

e “Almost any” set of points separable by two-layer
perceptron network.

¢ But, no efficient learning rule is known.

e Could we use gradient ascent/descent?
¢ We would need smoothness: small change in
weights produces small change in output.

e Threshold function is not smooth.

e Use a smooth threshold function!

6.034 - Spring 03 + 13 4

Slide4.1.14
Sigmoid Unit
The classic "soft threshold” that is used in neural netsisreferred to asa"sigmoid” (meaning S-like) and
is shown here. The variable z isthe "total input" or "activation" of a neuron, that is, the weighted sum of
al of itsinputs.

Note that when the input (z) is 0, the sigmoid's value is 1/2. The sigmoid is applied to the weighted
inputs (including the threshold value as before). There are actually many different types of sigmoids that
can be (and are) used in neural networks. The sigmoid shown here is actually called the logistic function.
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Slide4.1.15

Sigmoid Unit

We can think of asigmoid unit asa"soft" perceptron. The line where the perceptron switches from a0
output to a 1, is now the line along which the output of the sigmoid unit is 1/2. On one side of thisline,
the output tends to O, on the other it tendsto 1.

separator
© negative points.
+_positive points

So, this "logistic perceptron” is still alinear separator in the input space. In fact, there's awell known
technique in statistics, called logistic regression which uses this type of model to fit the probabilities of
boolean-valued outputs, which are not properly handled by alinear regression. Note that since the output
of thelogistic function is between 0 and 1, the output can be interpreted as a probability.

y=1/2

6.034 - Spring 03 « 15 Q
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Slide 4.1.16
Training
y(x, w)

w is a vector of weights
X is a vector of inputs

slide.

2y 2;
—— —————
Y = S(WysS(Wy X, + Wy X, — Woy) + WysS(W, X + WX, — W, ) — W;)
——
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Slide4.1.17

Given adataset of training points, each of which specifies the net inputs and the desired outputs, we can
write an expression for thetraining error, usually defined as the sum of the squared differences between
the actual output (given the weights) and the desired output. The goal of training isto find a weight
vector that minimizes the training error.

We could also use the mean squared error (M SE), which simply divides the sum of the squared errors by
the number of training points instead of just 2. Since the number of training pointsis a constant, the
value of the minimum is not affected.

Slide4.1.18
Gradient Descent
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Slide4.1.19

Let'slook at asingle sigmoid unit and see what the gradient descent rule would be in detail. We'll use the
on-line version of gradient descent, that is, we will find the weight change to reduce the training error on
asingle training point. Thus, we will be neglecting the sum over the training pointsin the real gradient.

Aswe saw in the last slide, we will need the gradient of the unit's output with respect to the weights, that
is, the vector of changes in the output due to a change in each of the weights.

The output (y) of asingle sigmoid unit is simply the output of the sigmoid function for the current
activation (that is, total weighted input) of the unit. So, this output depends both on the values of the
input features and the current values of the weights.

The gradient of this output function with respect to any of the weights can be found by an application of
the chain rule of differentiation. The derivative of y with respect to w can be written as the product of the
derivative with respect to z (the total activation) times the derivative of z with respect to the weight. The
first term is the slope of the sigmoid function for the given input and weights, which we can write as ds
(2)/dz. In this simple situation the total activation isalinear function of the weights, each with a
coefficient corresponding to a feature value, x;, for weight w;. So, the derivative of the activation with

respect to the weight isjust the input feature value, x;.

6.034 Artificial Intelligence. Copyright © 2006 by Massachusetts Institute of Technology. All rights reserved

The key property of the sigmoid isthat it is differentiable. This means that we can use gradient-based
methods of minimization for training. Let's see what that means.

The output of amulti-layer net of sigmoid unitsis afunction of two vectors, the inputs (x) and the
weights (w). An example of what that function looks like for a simple net is shown along the bottom,
where () is whatever output function we are using, for example, the logistic function we saw in the last

The output of this function (y) varies smoothly with changes in the input and, importantly, with changes
in the weights. In fact, the weights and inputs both play similar rolesin the function.

Training

y(x, w)
W is a vector of weights
X is a vector of inputs

y’ is desired output:

Error over the training set for a given
weight vector:

E= ¥ (r(x,w)-y')

Our goal is to find weight vector that minimizes error
2y 2;

f_)% f_)%
Y = S(WysS(Wy X, + Wy X, — Wop) + WysS(Wp, X, + WX, — W, ) — W)
——
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We've seen that the simplest method for minimizing a differentiable function is gradient descent (or
ascent if you're maximizing).

Recall that we are trying to find the weights that lead to a minimum value of training error. Here we see
the gradient of the training error as a function of the weights. The descent ruleis basically to change the
weights by taking asmall step (determined by the lear ning rate eta) in the direction opposite this

Note that the gradient of the error is simply the sum over all the training points of the error in the
prediction for that point (given the current weights), which is the network output y minus the desired
output yi, times the gradient of the network output for that input and weight combination.

Gradient Descent
Single Unit
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Gradient Descent
Single Unit
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Slide4.1.21

The derivative of the sigmoid plays a prominent role in these gradients, not surprisingly. Here we see
that this derivative has a very simple form when expressed in terms of the output of the sigmoid. Then,
itisjust the output times 1 minus the output. We will use thisfact liberally later.

Gradient of Unit Output

oy oy
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Slide4.1.23

We use the chain rule again but now the change in the activation due to a change in the weight is a more
complex expression: it is the product of the weight on the input times the rate of change in the output of
the lower unit with respect to the weight. Notice that this new term is exactly of the same form as the one

we are computing.

Slide4.1.20

Now, we can substitute this result into the expression for the gradient descent rule we found before (for a
single point).

We will define anew quantity called delta, which is defined to be the derivative of the error with respect
to achange in the activation z. We can think of this value as the "sensitivity" of the network output to a
change in the activation of a unit.

The important result we get is that the change in the ith weight is proportional to delta times the ith input.
This innocent looking equation has more names than you can shake a stick at: the deltarule, the LMS
rule, the Widrow-Hoff rule, etc. Or you can simply call it the chain rule applied to the squared training
error.

Derivative of the sigmoid
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Slide4.1.22

Now, what happensiif the input to our unit is not a direct input but the output of another unit and we're
interested in the rate of changeiny in response to a change to one of the weights in this second unit?

Gradient of Unit Output
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Gradient of Unit Output
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Recursion
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Slide4.1.25

Let's see how this works out for the simple case we've looked at before. There are two types of weights,
the ones on the output unit, of the form, w«3. And the weights on the two lower level units, wxq and wx,.

The form of dy/dw for each of these two weights will be different as we saw in the last dlide.

Slide4.1.24

We'vejust set up arecursive computation for the dy/dw terms. Note that these terms will be products of
the slopes of the output sigmoid for the units times the weight on the input times aterm of similar form
for units below the input, until we get to the input with the weight we are differentiating with respect to.
In the base case, we simply have the input value on that line, which could be one of the x; or one of the
y;, since clearly the derivative of any unit with respect to w; "below" the line with that weight will be

zero.

Gradient of Error

2

E=23 ((x',w)-y')

f_% f_%
Y = S(WyS(Wy X, + W)X, — Woy) + WosS(Wy, X, + WX, — W, ) — W)
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Slide4.1.26

Recall that in the derivative of the error (for a single instance) with respect to any of the weights, we get
aterm that measures the error at the output (y-y™) times the change in the output which is produced by
the change in the weight (dy/dw).

Gradient of Error
1 ;
E- 1Y (xw) -y
7 2z, z,
——
Y = S(WyS(Wy X, + W)y X, — Woy) + WysS(W, X, + WX, — W, ) — W)
~— —~—
oF oy -
_ i
ow, -y )6w]
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Side4.1.27

Let's pick weight w3, that weights the output of unit 1 (y,) coming into the output unit (unit 3). What is
the change in the output y3 as aresult of asmall change in wy3? Intuitively, we should expect it to
depend on the value of y4, the "signal" on that wire since the change in the total activation when we
change w3 is scaled by the value of y;. If y; were O then changing the weight would have no effect on

the unit's output. Z,
0E i\ oY

Changing the weight changes the activation, which changes the output. Therefore, the impact of the ow, =r-y) ow,

weight change on the output depends on the slope of the output (the sigmoid output) with respect to the

activation. If the slopeis zero, for example, then changing the weight causes no change in the output.
oy _ Oy 0z; _ 0y

When we evaluate the gradient (using the chain rule), we see exactly what we expect -- the product of the

sigmoid slope (dy/dz3) times the signal valuey;.

Gradient of Error

E=23 (r(x',w)-y')
7 2y

2

——
Y = S(WysS(Wy X, + Wy X, — Wop) + WysS(Wp, X, + WX, — Wy, ) — W)
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Slide4.1.28

Gradient of Error
o 1 T (y(x',w) - y ) What happens when we pick aweight that's deeper in the net, say w,,? Since that weight affectsy,, we
24 ! 2, expect that the change in the final output will be affected by the value of w3 and the slope of the
sigmoid at unit 3 (as when we were changing w,3). In addition, the change in y; will depend on the value

of the "signal" on the wire (x,) and the slope of the sigmoid at unit 1. Which is precisely what we see.

Z

f_% f_%
¥ = S(WysS(W1X; + Wy X, — Woy) + WysS(WipXg + Wy X, — Wy ) — Wos)

——
r4

? Note that in computing the gradients deeper in the net we will use some of the gradient terms closer to

the output. For example, the gradient for weights on the inputs to unit 1 change the output by changing

oneinput to unit 3 and so the final gradient depends on the behavior of unit 3. It isthe realization of this

reuse of terms that leads to an efficient strategy for computing the error gradient.
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Slide4.1.29
Gradient of Unit Output

The cases we have seen so far are not completely general in that there has been only one path through the

network for the change in aweight to affect the output. It is easy to see that in more general networks & oy oz
there will be multiple such paths, such as shown here. w0z 0w,
11 z 0wy,
This means that a weight can affect more than one of the inputs to a unit, and so we need to add up all _0s) Oz
the effects before multiplying by the slope of the sigmoaid. 0z owy,
= 6S(Z)[Wz4 @, twy %,
0z ow,, ow,,

Recursion Wit
more general ¥
A change in w,, affects the

error via a change in y,, which
affects y, and y;
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Slide4.1.30
Generalized Delta Rule
In general we will be looking at networks connected in the fashion shown on the left, where the output of
every unit at one level is connected to an input of every unit at the next level. We have not shown the
bias inputs for each of the units, but they are there!

A word on notation. To avoid having to spell out the names of al the weights and signalsin these
networks, we will give each unit an index. The output of unit k isy, We will specify the weights on the
inputs of unit k aswi->k wherei is either the index of one of the inputs or another unit. Because of the
"feedforward" connectivity we have adopted this terminology is unambiguous.

6.034 - Spring 03 + 30 (E

Slide4.1.31 .
Generalized Delta Rule
In this type of network we can define a generalization of the deltarule that we saw for asingle unit. We oF
still want to define the sensitivity of the training error (for an input point) to a change in the total 6; = 2 S
activation of aunit. Thisis a quantity associated with the unit, independent of any weight. We can / ©
express the desired change in aweight that feeds into unit k as (negative of) the product of the learning ds(z,)
rate, delta, for unit k and the value of the input associated with that weight. 6, = T]Zk: SV, i 0
3
Thetricky part is the definition of delta. From our investigation into the form of dy/dw, the form of delta AW, ,; = -1y, o ®
in the pink box should be plausible: the product of the slope of the output sigmoid times the sum of the
products of weights and other deltas. Thisis exactly the form of the dy/dw expressions we saw before.
The clever part here is that by computing the deltas starting with that of the output unit and moving 5, = M(&W‘Hs +OW, )
backward through the network we can compute al the deltas for every unit in the network in one pass az,
(once we've computed al the y's and z's during a forward pass). It isthis property that hasled to the AW, ,, = -18,Y,
name of this agorithm, namely backpr opagation. AW, 4 = —118,Y,
It isimportant to remember that thisis still the chain rule being applied to computing the gradient of the son- e o3 g
error. However, the computations have been arranged in a clever way to make computing the gradient
efficient.
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Slide4.1.32
Backpropagation
propag Thus, the algorithm for computing the gradients we need to update the weights of a net, with maximal re-
An efficient method of implementing gradient descent for neural usi ng of intermediate results is known as backpropagation
networks :
_ _ D t
Wiss =Wis =18 rf.Z‘e" Wiy Wik The two simple formulas we need are the ones we have just seen. One tells us how to change aweight.
ds(z;) Backprop Yi s Y 5y Thisisasimple gradient descent formula, except that it says that the gradient of the error is of the form
i= dz, ; O s rule 4 delta timesy; wherey; isthe signal on the wire with thisweight, so it is either one of the inputs to the
Y s for input net or an output of some unit.
ayer
The delta of one unit is defined to be the slope of the sigmoid of that unit (for the current value of z, the
weighted input) times the weighted sum of the deltas for the units that this unit feedsinto.
som-somg02 ez g
Slide4.1.33
Backpropagation
The backprop algorithm starts off by assigning random, small values to all the weights. The reason we - ) P P g )
want to have small weightsis that we want to be near the approximately linear part of the sigmoid ﬁgt‘ifg'rck'znt method of implementing gradient descent for neural
function, which happens for activations near zero. We want to make sure that (at least initially) none of - 5 Descent
the units are saturated, that is, are stuck at 0 or 1 because the magnitude of the total input istoo large Wiy =Wisy =101 e Wisy Wik
(positive or negative). If we get saturation, the slope of the sigmoid is 0 and there will not be any 8, = ds(z,) P Backprop Yi 5 Vi A
meaningful information of which way to change the weight. i dz, ; Wik e 4

yi is x; for input

1. Initialize weights to small random values layer

6.034 - Spring 03 + 33 4

Slide4.1.34
» Ba_CkprOPaga_tlon Now we pick a sample input feature vector. We will use this to define the gradients and therefore the
ﬁztjvfg'rck':”t method of implementing gradient descent for neural weight updates. Note that by updating the weights based on one input, we are introducing some
Descanit randomness into the gradient descent. Formally, gradient descent on an error function defined as the sum
Wirr =W =000 it Wisy Wik of the errors over all the input instances should be the sum of the gradients over all the instances.
5 = ds(z;) 3" 5w, ,, Backprop Yi 5, Y; Sy However, backprop is typically implemented as shown here, making the weight change based on each
17 dz, 4T 7k rule feature vector. We will have more to say on thislater.

j
yi is x; for input

1. Initialize weights to small random values layer

2. Choose a random sample input feature vector

6.034 - Spring 03 + 34 (E

Slide4.1.35
! i : ) Backpropagation
Now that we have weights and inputs, we can do aforward propagation, that is, we can compute the » ) P p g )
values of all theZsand y's, that is, the weighted inputs and the outputs for all the units. We will need :‘]\gtjvfg'rck':”t method of implementing gradient descent for neural
these values, so let's remember them for each unit. - X Descent
Wi =Wi,y ~10Y0 e ® Wi, @ Wik ®
. _ds(z) o o Yio % Yi 7§

i ; .
y; is x; for input

1. Initialize weights to small random values layer
2. Choose a random sample input feature vector

3. Compute total input ( z]) and output ( y;) for each unit
(forward prop)

6.034 - Spring 03 35 (E
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Backpropagation
An efficient method of implementing gradient descent for neural
networks
Wy =Wy, Dot W W
O——0——0
5 _95(z) Yio 5 Vi s,

. S.w, , Backprop
7 k'Y jok
dzl_ Zk: “*rule
yi is x; for input
1. Initialize weights to small random values layer
2. Choose a random sample input feature vector

3. Compute total input ( zj) and output ( y;) for each unit
(forward prop)

4. Compute §, for output I;yer
5, =2y, _yry -y, -y )0, -y

6.034 - Spring 03 » 36

¢

Slide4.1.37

Then we compute the deltas for the other units at the preceding layer using the backprop rule.

Backpropagation
An efficient method of implementing gradient descent for neural
networks
— Descent
Wi, =W,,;—n6Y,; rule Wi,; Wik
S, = MZ&‘ w Backprop yi 5]‘ yj 5k
4 dz], e Kok pule
yi is x; for input
1. Initialize weights to small random values layer

2. Choose a random sample input feature vector

3. Compute total input ( zj) and output ( y;) for each unit
(forward prop)

4. Compute §, for output layer

ds(z,) m m

% =gy Wa =y =yall=ya)y, - v7)

5. Compute 51. for all precedir{‘g layers by backprop rule

6. Compute weight change by descent rule (repeat for all weights)

6.034 - Spring 03 + 38

¢

Slide 4.1.39

We can see what is involved in doing the simple three-unit example we saw earlier. Here we see the
simple expressions for the deltas and the weight updates. Note that each expression involves datalocal to
aparticular unit, you don't have to look around summing things over the whole network, the delta's

Slide4.1.36

Now, we start the process of computing the deltas. First we do it for the output units, using the formula
shown here, that is, the product of the gradient of the sigmoid at the output unit times the error for that
unit.

Backpropagation
An efficient method of implementing gradient descent for neural
networks
Wi, =W,_,;—ndy, Descent w;, w

rule i) ok
v Oy —Q,—®
S, = MZ@‘ w Backprop ! é}' yJ ék
7 dz T Kok ryle
yi is x; for input

1. Initialize weights to small random values layer

i

2. Choose a random sample input feature vector

3. Compute total input ( z].) and output ( y;) for each unit
(forward prop)

4. Compute §, for output layer

ds(z,) i m

5 =g Ve ¥ =y L=y )y, - v7)

5. Compute 5} for all precedin"g layers by backprop rule

6.034 - Spring 03 + 37 4

Slide4.1.38

With the deltas and the unit outputs in hand, we can update the weights using the descent rule.

Backpropagation Example

First do forward propagation:

Compute z and y; given x,, w;

capture the recursion that we observed earlier. It isfor thisreason, simplicity, locality and, therefore, S =y(L-y)y -y™ 17wy, W)
efficiency that backpropagation has become the dominant paradigm for training neural nets. Ay

52 :yZ(l’YZ)stza \

As mentioned before, however, the difficult choice of the learning rate and relatively slow convergence 6, =y, (1 -y)owy 1 WA, L)
to aminimum are substantial drawbacks. Thousands of variations of backprop exist, aimed at addressing & e
these drawbacks. More sophisticated minimization strategies, for example, do a search along the gradient

direction (or related directions) to find a step that achieves a reduction in the error. Nevertheless, for Wo3 = Wos —185(-1) Wis = W3 =70, Wyy =Wy —1105Y
these methods one still needs to derive the gradient of the network and a backprop-like computation can Wgp =Wy, — FSy(—1) Wy, = Wy, — 15,X, Wy, = Wy, — 716,X,

be used to do that.

Woy = Wy — 16(-1) ’—' Wiy = Wy — 16X, W, =Wy, —16,X,

Compare to the Note that all computations are
direct derivation local!
earlier 6.034 - Spring 03 + 39 (E
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6.034 Notes: Section 4.2

Slide4.2.1 Training Neural Nets
without overfitting, hopefully...

Now that we have looked at the basic mathematical techniques for minimizing the training error of a Given: Data set, desired outputs and a neural net with m weights.

neural net, we should step back and look at the whole approach to training a neural net, keeping in Fin? a setting for thegﬁ!iigh? E_hattwill givetggod Pfredictive
. ; e perfrormance on new data. stimate expected performance on new
mind the potential problem of overfitting. data.

We need to worry about overfitting because of the generality of neural nets and the proliferation of
parameters associated even with arelatively simple net. It is easy to construct a net that has more
parameters than there are data points. Such nets, if trained so as to minimize the training error without
any additional constraints, can very easily overfit the training data and generalize very poorly. Here we
look at a methodology that attempts to minimize that danger.

sws-spngos o1

Training Neural Nets Slide4.2.2

without overfitting, hopefully...

Thefirst step (in theideal case) isto separate the datainto three sets. A training set for choosing the
Given: Data set, desired outputs and a neural net with m weights.

Find a setting for the weights that wil give good predictive weights (using backprop_agatlon),_ avalidation set for deciding when to stop the training and, if possible,
performance on new data. Estimate expected performance on new aseparate set for evaluating the final results.
data.

1. Split data set (randomly) into three subsets:
e Training set — used for picking weights
e Validation set - used to stop training
e Test set - used to evaluate performance

oo spnges o2

Slide4.2.3 Training Neural Nets

! ! _ . ) . ithout fitting, hopefully...
Then we pick a set of random small weights astheinitia values of the weights. Aswe explained earlier, without overtitting, hopetully

this reduces the chance that we will saturate any of the unitsinitially. Given: Dataisef; desired outputs and a neural net:with m weights:
Find a setting for the weights that will give good predictive

performance on new data. Estimate expected performance on new
data.
1. Split data set (randomly) into three subsets:

e Training set — used for picking weights

e Validation set — used to stop training

e Test set - used to evaluate performance
2. Pick random, small weights as initial values

sos-spngos o3
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Training Neural Nets Slide4.24

without overfitting, hopefully...

Then we perform the minimization of the training error, for example, using backpropagation. Thiswill
Given: Data set, desired outputs and a neural net with m weights.

3 ] A 7t nr generally involve going through the input data and making changes to the weights many times. A
Find a setting for the weights that will give good predictive N . . P . .
performance on new data. Estimate expected performance on new common term used in this context is the epoch, which indicates how many times the algorithm has gone
data. through every point in the training data. So, for example, one can plot the training error as function of the

1. Split data set (randomly) into three subsets:
e Training set — used for picking weights
e Validation set — used to stop training
e Test set - used to evaluate performance
2. Pick random, small weights as initial values
3. Perform iterative minimization of error over training set.

training epoch. We will seethis later.

sos-spgos o4

Slide4.25 Training Neural Nets

. o . . . . . ithout fitting, hopefully...
An important point is that we do not want to simply keep going until we reduce the training error to its Wwithout overtitting, hopetully

minimum value. Thisislikely to overfit the training data. Instead, we can use the performance on the Given: Dataise; desited outputs and.a neural nefrwith m: welghts:
A L Find a setting for the weights that will give good predictive
validation set as away of deciding when to stop; we want to stop when we get best performance on the performance on new data. Estimate expected performance on new
validation set. Thisislikely to lead to better generalization. We will look at thisin more detail data.
momentarily. 1. Split data set (randomly) into three subsets:
e Training set - used for picking weights

This type of "early termination” keeps the weights relatively small. K eeping the weights small isa * Valldation set — used ta stop tralning

? . . s . P e Test set - used to evaluate performance
strategy for reducing the size of the hypothesis space. It'sinformally related to the idea of maximizing 2. Pickraridomm, sall weights @& ifltial values
the margin by minimizing the magnitude of the weight vector in an SVM. It aso reduces the variance of 3. Perform iterative minimization of &rror over training sat.
the hypothesis since it limits the impact that any particular data point can have on the output. 4. Stop.when error on validation set reaches a minimum (to avoid

overfitting).

6.034 - Spring 03 + § (E

Training Neural Nets Siide4.2.6

without overfitting, hopefully... . .
) ) ! ) ) In neural nets we do not have the luxury that we had in SVMs of knowing that we have found the global
Given: Data set; desired outputs and a neural net:with m weights: optimum after we finished learning. In neural nets, there are many local optima and backprop (or any
Find a setting for the weights that will give good predictive L - . .
performance on new data. Estimate expected performance on new other minimization Strqtegy) can O.nly guarantee‘f"nd' ng alocal optimum (and even this guarantee
data. depends on careful choice of learning rate). So, it is often useful to repeat the training several timesto
1. Split.data set (randomly) into three isubsets: see if abetter result can be found. However, even asingle round of training can be very expensive so this
. Tra.lnlng set - used for picking \/\{e?ghts may not befeasible.
+ Validation set - used to stop training
e Test set - used to evaluate performance
Pick random, small weights as initial values
Perform iterative minimization of error over training set.

Stop_when_error on validation set reaches a minimum (to avoid
overfitting).

5. Repeat training (from step 2) several times (avoid local
minima)

o wWn

6.034 - Spring 03 + 6 (E

Slide4.2.7 Training Neural Nets

. ! ) ithout fitting, hopefully...
Once we have afina set of weights, we can use them once on aheld out test set to estimate the expected without overtitting, hopetdly

behavior on new data. Note the emphasis on doing this once. If we change the weights to improve this Given: Datasef; desited outputs and a neural nefiwith m weights:
. Find a setting for the weights that will give good predictive
behavior, then we no longer have aheld out set. performance on new data. Estimate expected performance on new
data.

1. Split data set (randomly) into three subsets:
e Training set - used for picking weights
s Validation set - used to stop training
e Test set - used to evaluate performance
2. Pick random, small weights as initial values
3. Perform iterative minimization of error over training set.

4. Stop_when error on validation set reaches a minimum (to avoid
overfitting).

5. Repeat )training (from step 2) several times (avoid local
inima

6. Use best weights to compute error on test set, which is
estimate of performance on new data. Do not repeat training
to improve this.

6.034 - 5pring 03 + 7 (E

file:///CJ/Documents%20and%20Settings/Admini strator/My%2...hing/6.034/04/l essons/ Chapter4/linearneural -handout.html (12 of 48)2/8/2007 1:49:35 PM



Training Neural Nets Slide4.28

without overfitting, hopefully...

Given: Data set, desired outputs and a neural net with m weights.
Find a setting for the weights that will give good predictive
performance on new data. Estimate expected performance on new
data.

1. Split data set (randomly) into three subsets:

e Training set — used for picking weights

e Validation set — used to stop training

e Test set - used to evaluate performance

Pick random, small weights as initial values

Perform iterative minimization of error over training set.

Stop_when_error on validation set reaches a minimum (to avoid
overfitting).

Repeat training (from step 2) several times (avoid local
minima)

o u S&WN

Use best weights to compute error on test set, which is
estimate of performance on new data.” Do not repeat training
to improve this.

Can use cross-validation if data set is too small to divide into three

subsets. 6034 spring03 +8

Slide4.2.9
Let'slook at the termination/overfitting issue via some examples.

Here we see the behavior of asmall neural net (two inputs, two hidden units and one output) when
trained on the data shown in the picture on the right. The white and black points represent 50 instances
from each of two classes (drawn from Gaussian distributions with different centers). An additional 25
instances each (drawn from the same distributions) have been reserved as atest set.

Asyou can see, the point distributions overlap and therefore the net cannot fully separate the data. The
red region represents the area where the net's output is close to 1 and the blue region represents where the
output is close to 0. Intermediate colors represent intermediate values.

The error on the training set drops quickly at the beginning and does not drop much after that. The error
on the test set behaves very similarly except that it is a bit bigger than the error on the training set. Thisis
to be expected since the detailed placement of points near the boundaries will be different in the test set.

6.034 Artificial Intelligence. Copyright © 2006 by Massachusetts Institute of Technology. All rights reserved

In many cases, one doesn't have the luxury of having these separate sets, due to scarcity of data, in which
case cross-validation may be used as a substitute.

Training vs. Test Error

‘Scheme Graphics

st Error (2 hidden units)

505 [T
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The behavior we see here is agood one; we have not overfit the data.

Training vs. Test Error

~Scheme Graphics

Training vs Test Error (2 hidden units)

T 16 31 46 61 75 51 106 12113 151 16 101 195 211 22 241 25 271 26 01
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Train vs Tt Error (10 hidden units) ‘Scheme Graphics
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Slide4.2.11

Note that this type of overfitting is not unique to neural nets. In this slide you can see the behavior of 1-
nearest-neighbor and decision trees on the same data. Both fit it perfectly and produce classifiersthat are

just as unlikely to generalize to new data.

For K-nearest-neighbors, on this type of data one would want to use avalue of K greater than 1. For
decision trees one would want to prune back the tree somewhat. These decisions could be based on the

performance on aheld out validation set.

Similarly, for neural nets, one would want to choose the number of units and the stopping point based on

performance on validation data.

6.034 - Spring 03 « 9 4

Slide4.2.10
Here we see the behavior of alarger neural net (with 10 hidden units) on the same data.

Y ou can see that the training error continues to drop over amuch longer set of training epochs. In fact,
the error goes up slightly sometimes, then drops, then stagnates and drops again. Thisistypica behavior
for backprop.

Note, however, that during most of the time that the training error is dropping, the test error is
increasing. Thisindicates that the net is overfitting the data. If you look at the net output at the end of
training, you can see what is happening. The net has constructed a baroque decision boundary to capture
precisely the placement of the different instancesin the training set. However, the instances in the test set
are (very) unlikely to fall into that particular random arrangement.

So, infact, al that extrawork in fitting the training set is wasted. Note that the test error with thisnet is
much higher than with the simpler net. If we had used a validation set, we could have stopped training
before it went too far astray.

' Scheme Graphics

Overfitting is
not unique to
neural nets...

1-Nearest Neighbors Decision Trees

' Scheme Graphics '~ Scheme Graphics
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Slide4.2.12
Overfitting in SVM

[iScheme GrephilgH (5l x| B Even SVMs, which have relatively few parameters and a well-deserved reputation for being resistant to

overfitting can overfit. In the center panel we see the output for alinear SYM. Thisis, in fact, the

optimal type of seaprator for this data. On the upper left we see afairly severe overfitting stemming from

the choice of atoo-small sigmafor aradia kernel. On theright is the result from alarger choice of sigma

(and arelatively high C). Where the points are densest, this actually approximates the linear boundary

but then deviates wildly in response to an outlier near (-2, 0). Thisillustrates how the choice of kernel

can affect the generalization ability of an SVM classifier.

1~ Scheme Graphics

Radial Kernel ¢=0.1 Radial Kernel o=1

sos-spngos o2

Slide4.2.13
On-line vs off-line
We mentioned earlier that backpropagation is an on-line training algorithm, meaning that it changes the
weights for each input instance. Although thisis not a"correct" implementation of gradient descent for
the total training error, it is often argued that the randomization effect is beneficia asit tends to push the
system out of some shallow local minima. In any case, the alternative "off-line" approach of actually o DrelREEINIG - present i ard v (chosen: randaraly
adding up the gradients for all the instances and changing the weights based on that complete gradient is from the training set). Change the weights to reduce the
also used and has some advantages for smaller systems. For larger nets and larger datasets, the on-line error on this instance. Repeat.

approach has substantial performance advantages.

There are two approaches to performing the error
minimization:

+ Off-line training - change weights to reduce the total error
on training set (sum over all instances).

On-line training is an approximation to gradient descent since
the gradient based on one instance is “noisy” relative to the
full gradient (based on all instances). This can be beneficial in
pushing the system out of shallow local minima.

6.034 - Spring 03 « 13 (E

Side4.2.14
Momentum
We have mentioned the difficulty of picking alearning rate for backprop that balances, on the one hand,
whtl —wt - 8y, Standard backprop descent the desire to move speedily towards a minimum by using alarge learning rate and, on the other hand, the
add el 7 need to avoid overstepping the minimum and possibly getting into oscillations because of atoo-large
AW!, =wl'l —w! = _ps,y, Rewrite to define change learning rate. One approach to balancing theseis to effectively adjust the learning rate based on history.
=7 =7 =7 771 in weights at time t One of the original approaches for thisis to use amomentum term in backprop.
Hereisthe standard backprop gradient descent rule, where the change to the weights is proportional to
deltaand y.
6.034 - Spring 03 « 14 (ﬁ
Slide4.2.15
Momentum
We can keep around the most recent change to the weights (at time t-1) and add some fraction of that
weight change to the current delta. The fraction, apha, is the momentum weight. wil —wt  —ns Standard backprop descent
ij isj —MOYi

Thebasic ideaisthat if the changes to the weights have had a consistent sign, then the effect isto have a AW!,, =wl'l —w! = _ps,y, Rewrite to define change
larger step size in the weight. If the sign has been changing, then the net change may be smaller. = e = 777 in weights at time t
Note that even if the deltatimesy term is zero (denoting alocal minimum in the error), in the presence AW, = -8y, + aAw] ) Qﬂ?ciﬂgaz drg??aer;gg;;ﬁrg'
of amomentum term, the change in the weights will not necessarily be zero. So, this may cause the the weight change at the
system to move through a shallow minimum, which may be good. However, it may aso lead to previous iteration.

undesirable oscillations in some circumstances. e Momentum can gradually increase step size when gradient

is unchanging.
In practice, choosing a good value of momentum for a problem can be nearly as hard as choosing a

. . . . Can help step through shallow local minima
learning rate and it's one more parameter to twiddle with. ° pistep throug W n

* One more parameter to twiddle... not used much anymore

Momentum is not that popular a technique anymore; people will tend to use more complex search
strategies to ensure convergence to alocal minimum.

6.034 - Spring 03 « 15 (E
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. Slide4.2.16
Input Representation
One question that arises in neural nets (and many other machine learning approaches) is how to represent

o All the signals in a neural net are [0, 1]. Input values should the input data. We have discussed some of these issues before.

also be scaled to this range (or approximately so) so as to

speed training. . . . . . .
Oneissuethat is prominent in neural netsis the fact that the behavior of these nets are dependent on the

scale of the input. In particular, one does not want to saturate the units, since at that point it becomes
impossible to train them. Note that all "signals’ in asigmoid-unit neural net are in the range [0,1]
because that is the output range of the sigmoids. It is best to keep the range of the inputsin that range as
well. Simple normalization (subtract the mean and divide by the standard deviation) will almost do that
and is adequate for most purposes.

sos-spngos o16

Slide4.2.17
Input Representation

Another issue has to do with the representation of discrete data (also known as "categorica" data). You
could think of representing these as either unary or binary numbers. Binary numbers are generally a bad
choice; unary is much preferable if the number of valuesis small since it decouples the values
completely.

o All the signals in a neural net are [0, 1]. Input values should
also be scaled to this range (or approximately so) so as to
speed training.

o If the input values are discrete, e.g. {A, B, C, D} or {1, 2, 3,
4%}, they need to be coded in unary l",orm.

\4

Unary
encoding

Binary
encoding

w w,
w. \
2 3

-1oX, X, X3 X,

Xq | X5 Xy [ X5 [ X3 | X4

o0 |m|>
OO |m|>
o|lo|o|o
olo|r|o
o|r|o|o
~lo|lo|o
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. Slide4.2.18
Output Representation
Similar questions arise at the output end. So far, we have focused on binary classification. There, the

® A neural net with a single sigmoid output unit is
aimed at binary classification. Class is 0 if y<0.5
and 1 otherwise.

e For multi-class problems

representation is clear - asingle output and we treat an output of 0.5 as the dividing value between one
class and the other.

For multi-class problems, one can have multiple output units, for example, each aimed at recognizing

¢ Can use one output per class (unary encoding) one class, sharing the hidden units with the other classes.

e There may be confusing outputs (two outputs >
0.5 in unary encoding).

e More sophisticated method is to use special
softmax units, which force outputs to sum to 1.

One difficulty with this approach is that there may be ambiguous outputs, e.g. two values above the 0.5
threshold when using a unary encoding. How do we treat such a case? One reasonable approach is to
choose the class with the largest output.

A more sophisticated method is to introduce a new type of unit (called "softmax") that forces the sum of
the unary outputs to add to 1. One can then interpret the network outputs as the probabilities that the
input belongs to each of the classes.

6.034 - Spring 03 « 18 (E

Slide4.2.19
Target Value
Another detail to consider in training is what to use as the desired (target) value for the network outputs.
We have been talking as if we would use O or 1 as the targets. The problem with thisis that those are the
asymptotic values of the sigmoid only achieved for infinite values of the weights. So, if we were to
attempt to train a network until the weights stop changing, then we'd bein trouble. It is common to use
values such as 0.1 and 0.9 instead of 0 and 1 during neural network training.

e During training it is impossible for the outputs to
reach 0 or 1 (with finite weights).

e Customary to use 0.1 and 0.9 as targets

e But, most termination criteria, e.g. small change in
training or validation error will stop training before

In practice, however, the usual termination for training a network is when the training or, preferably, targets are reached.

validation error either achieves an acceptable level, reaches a minimum or stops changing significantly.

These outcomes generally happen long before we run the risk of the weights becoming infinite.

6.034 - Spring 03 « 19 (E
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Slide4.2.20
Regression
Neural nets can also do regression, that is, produce an output which is areal number outside the range of
0to 1, for example, predicting the age of death as afunction of packs of cigarettes smoked. However, to
do regression, it isimportant that one does not try to predict a continuous value using an output sigmoid

e A sigmoid output unit is not suitable for regression,
since sigmoids are designed to change quickly from

0tol. unit. The sigmoid is basically a soft threshold with alimited dynamic range. When doing regression, we
¢ For regression, we want a linear output unit, that want the output unit to be linear, that is, simply remove the sigmoid non-linearity and have the unit
is, remove the output non-linearity. returned aweighted sum of itsinputs.

e The rest of the net still retains the sigmoid units.

6.034 - Spring 03 « 20 ,4

Slide4.2.21 ALVINN steers on highways

. . L . . i http:/ /www.ri.cmu.edu/projects/project_160.html
One very interesting application of neural networksisthe ALVINN project from CMU. The project was

the brainchild of Dean Pomerleau. ALVINN is an automatic steering system for a car based on input — .
from a camera mounted on the vehicle. This system was succesfully demonstrated on a variety of real | - $
roadsin actual traffic. A successor to ALVINN, which unfortunately was not based on machine learning, &
has been used to steer avehiclein a cross-country trip.

Dean Pomerleau
CMU

6.034 - Spring 03 « 21 ,(f

ALVINN steers on highways Slide42.2

http://www.ri.cmu.edu/projects/project_160.html . i i i
The ALVINN neural network is shown here. It has 960 inputs (a 30x32 array derived from the pixels of

an image), four hidden units and 30 output units (each representing a steering command). On the right
you can see a pattern of the brightnesses of the input pixels and right above that you can see the pattern
of the outputs, representing a "steer left" command.

30x32 Sensor
Input Retina

6.034 - Spring 03 « 22 (l

Slide4.2.23 ALVINN steers on highways

. N . . . http://www.ri.cmu.edu/projects/project_160.html
One of the most interesting issues that came up in the ALVINN project was the problem of obtaining

training data. It's not difficult to get images of somebody driving correctly down the middle of the road,
but if that were all that ALVINN could do, then it would not be safe to let it on the road. What if an
obstacle arose or there was a momentary glitch in the control system or abump in the road got you off

Original Image

center? It isimportant that ALVINN be able to recover and steer the vehicle back to the center. VAJAA] - [ANTANIN
Y4 vd - NN
The researchers considered having the vehicle drive in awobbly path during training, but that posed the NN N - ¢ (4

Shifted and Rotated Images

danger of having the system learn to drive that way. They came up with a clever solution. Simulate what
the sensory data would have looked like had ALVINN been off-center or headed in a slightly wrong
direction and aso, for each such input, simulate what the steering command should have been.

Now, you don't want to generate simulated images from scratch, asin avideo game, since they are * Problem: Getting enough diversity in training set

insufficiently reslistic. What they did, instead, is transform the real images and fill in the few missing * Answer: Transform sensor image and steering
pixels by aform of "interpolation” on the actual pixels. The results were amazingly good. direction
However, it turned out that once one understood that this whole project was possible and one understood com-spmgoa em

what ALVINN was learning, it became possible to build a specia purpose system that was faster and
more reliable and involved no explicit on-line learning. Thisis not an uncommon side-effect of a
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machine-learning project.

] Slide4.2.24
Some observations...
Neural nets are largely responsible for the current interest in statistical methods for machine learning.

* Although Neural Nets kicked off the current phase For awhile, they were wildly popular in the research community and saw many applications. Over time,

of interest in machine learning, they are extremely the enthusiasm has waned somewhat.
problematic...
¢ Too many parameters (weights, learning rate, The big problem with neural netsis that they are very complex and have many many parameters that
momentum, etc) have to be chosen. Furthermore, training them is a bit of anightmare. So, recent interest has shifted
e Hard to choose the architecture towards methods that are simpler to use and can be characterized better. For example, support vector

machines, which at one level can be viewed as a variation of the same perceptrons that neural nets

e Very slow to train
¥ superseded, is the current darling of the machine learning research and application community.

e Easy to get stuck in local minima

o Interest has shifted to other methods, such as
support vector machines, which can be viewed as
variants of perceptrons (with a twist or two).

sos-spngos o2

6.034 Notes: Section 4.3

Slide4.3.1

Thereis no easy way to characterize which particular separator the perceptron algorithm will end up
with. In general, there can be many separators for a data set. Even in the tightly constrained bankruptcy
data set, we saw two runs of the algorithm with different starting points ended up with slightly different
hypotheses. |s there any reason to prefer one separator over the others?

Which Separator?

s034-spring a3 1 g

Slide4.3.2
Which Separator? Y es. One natural choiceisto pick the separator that has the maximal margin to its closest points on
either side. Thisisthe separator that seems most conservative. Any other separator will be "closer" to
Maximize the margin to closest points one class than to the other. The one shown in thisfigure, for example, seems likeit's closer to the black

points on the lower left than to the red ones.

T 037 Sprng 03 o 2
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This one seems safer, no?

Another way to motivate the choice of the maximal margin separator isto see that it reduces the
"variance" of the hypothesis class. Recall that a hypothesis has large variance if small changesin the data
result in avery different hypothesis. With amaximal margin separator, we can wiggle the data quite a bit
without affecting the separator. Placing the separator very close to positive or negative pointsis akind of
overfitting; it makes your hypothesis very dependent on details of the input data.

Let's see if we can figure out how to find the separator with maximal margin as suggested by this picture.

6.034 Artificial Intelligence. Copyright © 2006 by Massachusetts Institute of Technology. All rights reserved

Which Separator?

Maximize the margin to closest points

Margin of a point

7 =y'(w-x'+b)

» proportional to perpendicular
distance of point x' to hyperplane

6.034 - Spring 03 + 4
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Slide4.3.5

Remember that any scaling of w and b defines the same line; but it will result in different values of
gamma. To get the actual geometric distance from the point to the separator (called the geometric

margin), we need to divide gamma through by the magnitude of w.

Margin
y'=y'(w-x'+b)

* Scaling w changes value of margin but not actual
distances to separator (geometric margin)

® Pick the margin to closest positive and negative
points to be 1

+1i(w-x'+b)=1

—1(w-x?+b)=1

6.034 - Spring 03 + 6
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Slide4.34

First we have to define what we are trying to optimize. Clearly we want to use our old definition of
margin, but we'll have to deal with a couple of issuesfirst. Note that we're using the w, b notation instead
of w bar, because we will end up giving b special treatment in the future.

Margin of a point

Y =y(w-x'+b)
« proportional to perpendicular

distance of point x' to hyperplane
* geometric margin is '/

w|

6.034 - Spring 03 + § (E

Slide4.3.6

The next issue is that the we have defined the margin for a point relative to a separator but we don't want
to just maximize the margin of some particular single point. We want to focus on one point on each side
of the separator, each of which is closest to the separator. And we want to place the separator so that the
it isasfar from these two points as possible. Then we will have the maximal margin between the two
classes.

Since we have a degree of freedom in the magnitude of w we're going to just define the margin for each
of these pointsto be 1. (Y ou can think of this 1 as having arbitrary units given by the magnitude of w.)

Y ou might be worried that we can't possibly know which will be the two closest points until we know
what the separator is. It's areasonable worry, and we'll sort it out in a couple of slides.
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Slide4.3.7

Having chosen these margins, we can add the two equations to get that the projection of the weight
vector on the difference between the two chosen data points has magnitude 2. Thisis obvious from the
setup, but it's nice to see it follows.

Then, we divide through by the magnitude of the weight vector and we have asimple expression for the
margin, simply 2 over the magnitude of w.

Slide4.3.8
Picking w to Maximize Margin

® Pick w to maximize geometric margin
2
[w
e or, equivalently, minimize
_—
w| = Vw - w
e or, equivalently, minimize

1,02 1 1
EH‘"” :g‘""”ziglwf
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Slide4.3.9

We'd like to find the w that specifies the maximum margin separator. To be a separator, w needs to
classify the points correctly. So, we'll maximize the margin, subject to a set of constraints that require the
points to be classified correctly. We will require each point in the training set to have a margin greater
than or equal to 1. Requiring the margins to be positive will ensure that they are classified correctly.
Requiring them to be greater than or equal to 1 will ensure that the margin of the closest points wil be
greater than or equal to 1. The fact that we are minimizing the magnitude of w will force the margins to
be as small as possible, so that in fact the margins of the closest points will equal 1.

. L Slide4.3.10
Constrained Optimization

mwin%”sz subjectto y'(w-x' +b)-1>0, v,

6.034 - Spring 03 10 (E

Margin

® Pick the margin to closest positive and negative
points to be 1
+1(w-x'+b)=1
—L(w-x?+b)=1
e Combining these

w- (! -x?)=2

e Dividing by length of w gives perpendicular
distance between dashed lines (2 x geometric
margin)

w .

Iwl

(xl—x2)=i

Iw

6.034 - Spring 03 + 7
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Of course, thisis not enough, since we could simply pick w = 0 which would be completely useless.

So, we want to pick w to maximize the geometric margin, that is, to maximize 2 over the magnitude of
w. To maximize this expression, we want to minimize the magnitude of w. If we minimize 1/2 the
magnitude squared that is completely equivalent in effect but simpler analyticaly.

Picking w to Maximize Margin

® Pick w to maximize geometric margin
2

Iw]

e or, equivalently, minimize

1 2 1 1

5"‘"“ SyWew= ngf-
o while classifying points correctly

y'(w-x' +b)>1

s or, equivalently,

y'(w-x' +b)-1>0

6.034 - Spring 03 + 9
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So, to summarize, we have defined a constrained optimization problem as shown here. It involves
minimizing a quadratic function subject to a set of linear constraints. These kinds of optimization

problems are very well studied. When the function to be minimized islinear, it is a particularly easy case
that can be solved by a"linear programming" algorithm. In our case, it's a bit more complicated.
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Slide4.3.11

The standard approach to solving this type of problem isto convert it to an unconstrained optimization
problem by incorporating the constraints as additional termsin the function to be minimized. Each of the
constraints is multiplied by aweighting term alpha;. Think of these terms as penalty terms that will

penalize values of w that do not satisfy the constraints.

Constrained Optimization
min%”wu2 subject to y'(w-x' +b)-120, v,

Convert to unconstrained optimization by incorporating
the constraints as an additional term

(1 i i
mJn[EHWHZ—Za,[y(w-x +b)—1]] @ 20,V

To minimize expression:
minimize first (original) term, and
maximize second (constraint) term
since o; > 0, encourages constraints to be satisfied
but we want least “distortion” of original term...

6.034 - Spring 03 « 12 4
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Side4.3.12
Constrained Optimization To minimize the combined expression we want to minimize the first term (the magnitude of the weight
1 vector squared) but we want to maximize the constraint term since it is negated. Since alpha; > 0,
ming |w|" subject to y'(w-x'+b)-12>0, Vv, making the constraint terms bigger encourages them to be satisfied (we want the margins to be bigger
than 1).
Convert to unconstrained optimization by incorporating
the constraints as an additional term However, the bigger the constraint term, the farther we move from the original minimal value of w. In
1 general we want to minimize this"distortion" of the original problem. We want to introduce just enough
mvjn[EHWH - Zi:a,[)/'(w -x' +b) - 1]] @, 20,9, distortion to satisfy the constraints. We'll look at thisin more detail momentarily.

Slide4.3.13
This method we have begun to outline here is called the method of L agrange multipliers and the alpha;
are the individual Lagrange multipliers.

Constrained Optimization
min%“w“2 subject to y'(w-x' +b)-1>0, v,
w

Convert to unconstrained optimization by incorporating
the constraints as an additional term

m“i'n[%”wuz _ Z(Iwﬂj @20,

o ) \ Lagrange multipliers
To minimize expression:
minimize first (original) term, and
maximize second (constraint) term
since o > 0, encourages constraints to be satisfied
but we want least “distortion” of original term...

Method of Lagrange multipliers |

6.034 - Spring 03 13
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6.034 Notes: Section 4.4
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Slide4.4.1

The details of solving a Lagrange multiplier problem are alittle bit complicated. But we are going to go
through the derivation at a somewhat abstract level here, because it gives us some insights and

intuitions about the resulting solution.

We have an expression, L(w,b), that also involves parameters alpha. If we knew what the values of
alpha should be, we could just fix them, minimize L with respect to w and b, and be done. The big

problem isthat we don't know what the alphas are supposed to be.

Maximizing the Margin

L(w,b) = %uwnz - Za,bu(w X' +b)-1]

N S i
Minimized when: W = > ay'x’
i

Say' = 0‘

6.034 - Spring 03 + 2

4

Slide4.4.3

Maximizing the Margin

Lw, b) = 2w’ - Y auly'w - x' +b)- 1]

sos4-sprg03 01 g

Slide4.4.2

So, we're going to start by imagining that we know what we want the alphas to be. We'll hold them
constant for now, and figure out what values of w and b would optimize L for those fixed al phas. We can
do this by taking the partial derivatives of L with respect to w and b and setting them to zero, getting two
constraints. We find that the best value of w, w* is aweighted sum of the input points (in the same form
as the dual perceptron); and we get an extra constraint that the sum of the alphas for the positive points
has to equal the sum of the alphas for the negative points.

We can substitute this expression for the optimal w's back into our original expression for L, getting L as
afunction of alpha. Now we have an expression involving only aphas, which we don't know, and x's and
y's, which we do know. This function is known as the dual Lagrangian. One of the most important things

Maximizing the Margin

about it, from our perspective, isthat the feature vectors only appear in dot products with other feature

vectors. We'll come back to this point later on.

Dual Lagrangian

maxL(a) subjectto > .ay’=0 and a,>0,Vi
@ |

6.034 - Spring 03 + 4

¢

L(w,b) = %\IW\IZ - ;a‘y(w X' +b)-1]

Minimized when: ‘W* = Za,.y‘x‘
7

Z(x,y“ = 0‘

Substituting w* into L yields dual Lagrangian:

‘L((X) =D - ! IWTAZL S
1

2 =1 k=1 \

Only dot
products of the
feature vectors

appear
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Slide4.4.4

Now, it'stime to pick the best values for the aphas. We do so (for reasons that you'll haveto learnin a
meath class) by choosing the alpha values that maximize this expression. We will retain the constraints
that the sum of the alpha values for positive pointsis equal to the sum of the alpha values for negative
points, and that the al phas must be positive.

Note that we will be solving for m alphas. We started with n+ 1 (the number of features, plus one)
variablesin the original Lagrangian and now we have m (the number of data points) variablesin the dual
Lagrangian. For the low-dimensional examples we have been dealing with this seems like a horrible
tradeoff. We will seelater that this can be a very good tradeoff in some circumstances.

We have two constraints, but they are much simpler. One constraint is simply that the alphas be non-
negative---this is required because our original constraints were >= inequalities. The constraint on the
alphas comes from the setting to zero the derivative of the Lagrangian with respect to the offset b.

This problem is not trivial to solve in general; we'll talk more about this later. For now, let us assume that
we can solve it and get the optimal values of aphas.
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Slide4.45

In the solution, most of the alphas will be zero, corresponding to data points that do not provide binding
constraints on the choice of the weights. A few of the data points will have their alphas be nonzero; they
will all satisfy their constraints with equality (that is, their margin is equal to 1). These are called
support vectors and they are the ones used to define the maximum margin separator. Y ou could remove
all the other data points and still get the same separator. Because the sparsity of support vectorsis so
important, this learning method is called a support vector machine, or SVM.

rights reserved

Dual Lagrangian

maxL(a) subjectto Y ay’' =0 and a, >0, Vi

In general, since o; >= 0, either

a; = 0: constraint is satisfied with
no distortion at optimum w
or

o; > 0: constraint is satisfied with
equality (in this case x' is known as a
support vector) @

cose-sprng03 5 o

Slide4.4.6

Given the optimal alphas, we can compute the weights. but this time, the coefficientsin the sum are the

_ Lagrange multipliers, the alphas, which are mostly zero. This means that the equation of the maximum

maxL(a) subject to Zaiy' =0 and a; >0, Vi margin separator depends only on the handful of data points that are closest to it. It makes sense that all
* i the rest of the points would be irrelevant.

Dual Lagrangian

In general, since o, >= 0, either
o; = 0: constraint is satisfied with no
distortion at optimum w .
or
o; > 0: constraint is satisfied with equali
(x' is known as a support vector)

We can use the fact that at the support vectors the constraints hold with equality to solve for the value of
the offset b. Each such constraint can be used to solve for this scalar.

6.034 - Spring 03 + 6 (E

Slide4.4.7

We have not discussed actual agorithmsfor finding the maxima of the dual Lagrangian. It turns out that
the optimization problem we defined is arelatively simple form of the general class of quadratic _
programming problems, which are known to (a) have a unigue maximum and (b) can be found using maxL(a) subjectto ) ay’'=0 and a; >0, Vi
existing algorithms. A number of variations on these algorithms exist but they are beyond our scope. * |

Dual Lagrangian

In general, since o, >= 0, either % 0
o; = 0: constraint is satisfied with no
distortion at optimum w .,

or 0
o; > 0: constraint is satisfied with equalit%
(x' is known as a support vector) *%
a=0

e Has a uniqgue maximum vector a=0 bd

e Can be found using quadratic programming
or gradient ascent

6.034 - Spring 03 + 7 (E

Slide 4.4.8
SVM Classifier

» Given unknown vector u, predict class (1 or -1) as
follows:

With the values of the optimal alpha's and b in hand, and the knowledge of how w is defined, we now
have a classifier that we can use on unknown points. Crucially, notice that once again, the only thing we
care about are the dot products of the unknown vector with the data points.

k
h(u) = sign[Za,y‘x’ U+ b]

i=1

e The sum is over k support vectors

6.034 - Spring 03 + 8 '(E
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Slide4.4.9

Here's the result of running a quadratic programming algorithm to find the maximal margin separator for
the bankruptcy example. Note that only four points have non-zero alpha's. They are the closest points to
theline and are the ones that actually define the line.

Slide 4.4.10
Key Points

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

space.

6.034 - Spring 03 + 10 (E

Slide4.4.11

The fact that we only need dot products (as we will see next) means that we will be able to substitute
more general functions for the traditional dot product operation to get more powerful classifiers without
really changing anything in the actual training and classification procedures.

Slide 4.4.12
Key Points

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

e Exclusive reliance on dot products enables
approach to non-linearly-separable problems.

* The classifier depends only on the support vectors,
not on all the training points.

two classes.

6.034 - Spring 03 » 12 (E
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Bankruptcy Example

- Scheme Graphics ol

oyy' for support vectors are
non-zero, all others are zero.

6.034 - Spring 03 + 9
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Let's highlight once again afew of the key points about SVM training and classification. First and
foremost, and at the risk of repeating myself, recall that the training and classification of SVMs depends
only on the value of the dot products of data vectors. That is, if we have away of getting the dot

products, the computation does not otherwise depend explicitly on the dimensionality of the feature

Key Points

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

e Exclusive reliance on dot products enables
approach to non-linearly-separable problems.

6.034 - Spring 03 + 11

¢

Another point to remember is that the resulting classifier does not (in general) depend on al the training
points but only on the ones "near the margin”, that is, those that help define the boundary between the
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Slide4.4.13

The maximum margin constraint helps reduce the variance of the SVYM hypotheses. Insisting on a
minimum magnitude weight vector drastically cuts down on the size of the hypothesis class and helps
avoid overfitting.

Slide4.4.14
Key Points

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of data.
unknown with samples.

¢ Exclusive reliance on dot products enables
approach to non-linearly-separable problems.

» The classifier depends only on the support vectors,
not on all the training points.

e Max margin lowers hypothesis variance.

* The optimal classifier is defined uniquely - there
are no “local maxima” in the search space

® Polynomial in number of data points and
dimensionality

6.034 - Spring 03 « 14 (g
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Key Points

e Learning depends only on dot products of sample
pairs. Recognition depends only on dot products of
unknown with samples.

¢ Exclusive reliance on dot products enables
approach to non-linearly-separable problems.

e The classifier depends only on the support vectors,
not on all the training points.

e Max margin lowers hypothesis variance.

6.034 - Spring 03 13 (E

Finally, we should keep firmly in mind that the SVM training process guarantees a unique global
maximum. And it runsin time polynomial in the number of data points and the dimensionality of the

6.034 Notes: Section 4.5

Slide4.5.1

Thus far, we have only been talking about the linearly separable case. What happens for the case in
which we have a"nearly separable” problem? That is, some "noise points' that are bound to be
misclassified by alinear separator.

Itisuseful to think about the behavior of the dual perceptron on this type of problem. In that algorithm,
the value of the alphag; for a point is incremented proportionally to its distance to the separator. In fact,
if the point is classified correctly, no change is made to the multiplier. We can see that if point i
stubbornly resists being classified, then the value of alpha; will continue to grow without bounds.

The alpha'sin the dual perceptron are analogous to the values of the Lagrange multipliersin the SVM.
In both cases, the separator is defined as alinear combination of the input points, with the alphas being
the weights.

So, one strategy for dealing with these noise pointsin an SVM isto limit the maximal value of any of
the alpha;'s (the Lagrange multipliers) to some C. And, furthermore, to ignore the points with this
maximal value when computing the margin. Clearly, if we ignore enough points, we can always get
back to alinearly separable problem. By choosing alarge value of C, we will work very hard at

Not Linearly Separable?

*Require 0< ¢, <C

» C specified by user; controls tradeoff between size
of margin and classification errors

¢ C = oo for separable case

° e o ° S
. ° e L] L]
. ° .
. . . é o.oo
* . L °
S . . ° . °
. S e ¢ :o
. )
- .
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correctly classifying al the points, alow value of C will allow usto give up more easily on many of the points so as to achieve a better margin.
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Slide4.5.3

Here is an example of a separator on a simple data set with four points, which are linearly separable. The
colors show the result returned by the classification function on each point in the space. Gray means near
1 or -1. The more intense the blue, the more positive the result; the more intense the red, the more
negative. Points lying between the two gray lines return values between -1 and +1.

Note that only three of the four samples are actually used to define w, the ones circled. The other plus

sample might as well not be there; its coefficient alphais zero.

The samplesthat are actually used are the support vectors.

Another example: Not linearly
separable

Image by Patrick Winston
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Slide4.5.5

However, even if we provide amechanism for ignoring noise points, aren't we really limited by alinear

classifier? Well, yes.

However, in many cases, if we transform the feature values in a non-linear way, we can transform a
problem that was not linearly separable into one that is. This example, shows that we can create a
circular separator by finding alinear classifier in a feature space defined by the squares of the original
feature values. That is, we can obtain a non-linear classifier in the original space by finding alinear

classifier in atransformed space.

Hold that thought.

Slide4.5.2
This simple example shows how changing C causes the geometric margin to change. High values of C
penalize misclassifications more. Low values may permit misclassifications to achieve better margin.

Example: Linearly Separable

h

Image by Patrick Winston
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The next example is the same as the previous example, but with the addition of another plus samplein
the lower left corner. There are several points of interest.

First, the optimization has failed to find a separating line, as indicated by the minus sample surrounded
by ared disk. The alphas were bounded and so the contribution of this misclassified point islimited and
the algorithm converges to aglobal optimum.

Second, the added point produced quite a different solution. The algorithm islooking for best possible
dividing line; atradeoff between margin and classification error defined by C. If we had kept a solution
close to the one in the previous slide, the rogue plus point would have been misclassified by alot, while
with this solution we have reduced the misclassification margin substantially.

Isn’t a linear classifier very limiting?

not linearly
separable

linearly separable using
squared value of features.

Important: Linear separator in transformed feature space
maps into non-linear separator in original feature space

6.034- Spring 03 + 5 (}
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Not separable?
Try a higher dimensional space!

Not separable with 2D line Separable with 3D plane

6.034 - Spring 03 + 6

¢

Slide4.5.7

First, suppose there is afunction, phi, that puts the vectorsinto another, higher-dimensional space, which
will also typically involve a non-linear mapping of the feature values. In general, the higher the

dimensionality, the more likely there will be a separating hyperplane.

By moving to a higher-dimensional feature space, we are also moving to a bigger hypothesis class, and
so we might be worried about overfitting. However, because we are finding the maximum margin

separator, the danger of overfitting is greatly reduced.

What you need

e To get into the new feature space, you use o(x')

e The transformation can be to a higher-dimensional
feature space and may be non-linear in the feature
values.

e Recall that SVM’s only use dot products of the
data, so

e To optimize classifier, you need ®(x')- ®(x*)

e To run classifier, you need ®(x')- ®(u)

* So, all you need is a way to compute dot products
in transformed space as a function of vectors in
original space!

6.034 - Spring 03 + 8

4

Slide4.5.9

Let's assume that we have a function that allows us to compute the dot products of the transformed

Slide4.5.6

Furthermore, when training samples are not separable in the original space they may be separable if you
perform atransformation into a higher dimensional space, especially one that is a non-linear
transformation of the input space.

For the example shown here, in the original feature space, the samplesall liein aplane, and are not
separable by a straight line. In the new space, the samples lie in athree dimensional space, and happen to
be separable by a plane.

The heuristic of moving to a higher dimensional space is general, and does not depend on using SVMs.
However, we will see that the support vector approach lends itself to movement into higher dimensional

spaces because of the exclusive dependence of the support vector approach on dot products for learning
and subsequent classification.

What you need

e To get into the new feature space, you use o(x')

e The transformation can be to a higher-dimensional
feature space and may be non-linear in the feature
values.

6.034 - Spring 03 + 7 (E

Slide4.5.8

Even if we aren't in danger of overfitting, there might be computational problemsif we move into higher
dimensional spaces. In real applications, we might want to move to orders of magnitude more features,
or even (in some sense) infinitely many features! We'll need a clever trick to manage this...

Y ou have learned that to work in any space with the support vector approach, you will need (only) the
dot products of the samplesto train and you will need the dot products of the samples with unknowns to
classify.

Note that you don't need anything else. So, al we need is away of computing the dot product between
the transformed feature vectors.

The “Kernel Trick”

vectorsin away that depends only on the original feature vectors and not directly on the transformed
vectors. We will call thisthe kernel function. (This usage of the term "kernel" isrelated to kernel
functions we saw in regression; they are both about measuring effective distances between pointsin
different spaces.)

Then you do not need to know how to do the transformations themselves! Thisiswhy the support-vector
approach is so appealing. The actual transformations may be computationally intractable, or you may not
even know how to do the transformations at all, but you can still learn and classify without ever moving
explicitly up into the high-dimensional space.

o If dot products can be efficiently computed by
o(x')- o(x*) = K(x',x*)

e Then, all you need is a function on low-dim inputs
K(x',x*)

*You don't need ever to construct high-dimensional
o(x')

6.034 - Spring 03 + 9 (E
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Slide 4.5.10
Standard Choices For Kernels So now we need to find some phis (mappings from low to high-dimensional space) that have a
. convenient kernel function associated with them. The simplest case is one where phi is the identity
* No change (linear kernel) function and K isjust the dot product.
D(x')- d(x¥) = K(x', x¥) = x' - x*
6.034 - Spring 03 + 10 ‘(E
Slide4.5.11 ]
One such other kernel function is the dot product raised to a power; the actual power is a parameter of Standard Choices For Kernels
the learning algorithm that determines the properties of the solution. .
e No change (linear kernel)
o(x') - O(x*) = K(x', x*) = x' - x*
® Polynomial kernel (nth order)
K(x',x*) =1 +x'-x)"
6.034 - Spring 03 « 11 (E
Polynomial Kernel Example Slide4.5.12
(one feature) Not Let'slook at asimple example of using a polynomial kernel. Consider the one dimensiona problem
—E—E—!—!—!—!— % separable shown here, which is clearly not separable. Let's map it into a higher dimensional feature space using the
‘ ‘ : : ‘ polynomial kernel of second degree (n=2).
6.034 - Spring 03 « 12 (E
Slide4.5.13 Polynomial Kernel Example
Note that a second degree polynomial kernel is equivalent to mapping the single feature value x to a (one feature) Not
three dimensional space with feature values x2, sqrt(2)x, and 1. Y ou can see that the dot product of two —!—E—!—!—H % separable
of these feature vectors is exactly the value computed by the polynomial kernel function. ®(x) = (X%, \2x, 1)
If we plot the original pointsin the transformed feature space (using just the first two features), we seein " " Separable
fact that the two classes are linearly separable. Clearly, the third feature value (equal to 1) will be o
irrelevant in finding a separator. 03 &) 0(z)
=x22% +2xz+1

0.25
The important aspect of al of thisisthat we can find and use such a separator without ever explicitly S o m = {1+ x2y
computing the transformed feature vectors - only the kernel function values are required. h / B.Pos

0.15

0.1

/

. .
0 02 0.4 06 0.8 4
sani2)x 6.034 - Spring 03 « 13 (E
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Slide4.5.14
Polynomial Kernel
. Hereisasimilar transformation for atwo dimensional feature vector. Note that the dimension of the
* Polynomial kernel for n=2 and features x=[x, x;] transformed feature vector is now 6. In general, the dimension of the transformed feature vector will

K(x,2) = (1 + x - 2)? grow very rapidly with the dimension of the input vector and the degree of the polynomial.

is equivalent to the following feature mapping:

O(x) = [x2 X2 V2x,%, V2x; 2x, 1]

e We can verify that:
D(X) - D(Z) = X222 + X222 +2X,X, 2,2, +2X, 2, +2X,Z, +1
=(1+x2 +X,2,)
=(1+x-2)?
=K(x,z)

6.034 - Spring 03 » 14 ‘4

Slide 4.5.15 :
Polynomial Kernel

Let'slook at the behavior of these non-linear kernels.

The decision surface produced by the non-linear kernelsis curved. Hereis an example for which the
(unsuccessful) attempt on the left is with a simple dot product; the attempt on the right is done with a
polynomial kernel of degree 3. Note the curve in the solution, and note that four of the samples have
become support vectors.

Generally, the higher-dimensional the transformed space, the more complex the separator isin the
original space, and the more support vectors will be required to specify it.

Images by Patrick Winston

6.034 - Spring 03 15 (E

Slide4.5.16
Standard Choices For Kernels Another popular kernel function is an exponential of the square of the distance between vectors, divided
. by sigma squared. Thisis the formulafor a Gaussian bump in the feature space, where sigmaisthe
* No change (linear kernel) standard deviation of the Gaussian. Sigmais a parameter of the learning that determines the properties of
the solution.

@(x') - (x¥) = K(x', x*) = x' - x*

® Polynomial kernel (nth order)

KO, x5) =1 +x' - x*)"

¢ Radial basis kernel (c is standard deviation)
e ?

K(x',x*)=e -e

( ) 20° 202

(- x*)(x -xK)

6.034 - Spring 03 16 4

Side4.5.17 . .
Radial-basis kernel
You can get acurved separator if you use radial basis functions, which give us aclassifier that isa sum

of the values of several Gaussian functions. o Classifier based on sum of Gaussian bumps with

standard deviation o, centered on support vectors.

Let's pause a minute to observe something that should strike you as a bit weird. When we used the
polynomial kernels, we could see that each input feature vector was being mapped into a higher-

dimensional, possibly very high dimensional, feature vector. With the radial-basis kernel each input h(u) = signlh'(u)]

feature vector is being mapped into afunction that is defined over the whole feature space! In fact, each

input feature point is being mapped into a point in an infinite-dimensional feature space (known asa u ) LS ; ;
Hilbert space). We then build the classifier as sum of these functions. Whew! fr(u) = lea,y K(x',u)+b
The actual operation of the process is less mysterious than this "infinite-dimensional" mapping view, as e-uf

we will see by avery simple example. K(x‘,u):e?

6.034 - Spring 03 17 (E
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Radial-basis kernel
c=0.1

6.034 - Spring 03 18

<

Slide4.5.19

Here is the solution obtained from an SVM quadratic optimization agorithm. Note that four points are
support vectors, as expected, the points near where the decision boundary has to be. The farther positive

points receive alpha=0. The value of the offset, b is also shown.

The blue and pink Gaussian bumps correspond to copies of a Gaussian with standard deviation of 0.1

scaled by the corresponding alpha values.

Radial-basis kernel
=176 @=--176 _Hid
;=176 a,=-1.76 c=y
4 i e -uf?
() =Y ay'K(x',u)+b K(x',u) = e
N\t 20
g
- - = 5
o
Tie 0.1 0.2 03 0.4 0 0.6 o 08
X
ozt 0. 03 0.4 0.5 0.6
6.034 - Spring 03 + 20

Slide4.5.21

Here we see a separator for our simple five point example computed using radial basis kernels. The
solution on the left, for reference, is the original dot product. The solution on theright is for aradia basis
function with asigma of one. Note that al the points are now support vectors.

Slide4.5.18

Along the bottom you see that we're dealing with the simple one-dimensional example that we looked at
earlier using a polynomial kernel. The blue points are possitive and the pinkish purple ones are negative.
Clearly this arrangement is not linearly separable.

K (xi,u) can be seen as a"Gaussian bump"; that is, as a function with amaximum at u = xi, that decreases
monotonically with the distance between u and xi, but is always positive and goes to 0 at infinite
distance. The parameter sigma specifies how high the bump is and how fast it falls off (the area under the
curve of each bump is 1, no matter what the value of sigmais). The smaller the sigma, the more sharply
peaked the bump.

With aradial-basis kernel, we will be looking for a set of multipliers for Gaussian bumps with the
specified sigma (here it is 0.1) so that the sum of these bumps (plus an offset) will give us a classification
function that's positive where the positive points are and negative where the negative points are.

Radial-basis kernel

@=-176 o
a,=-1.76 "=

@ =1.76

@, =1.76 o=01

25

155 07 08

o1 0. 0.3 0.4 0.5 06

support vectors

6.034 - Spring 03 + 19 ‘4

Slide4.5.20

The black line corresponds to the sum of the four bumps (and the offset). The important point isto notice
where this line crosses zero since that's the decision surface (in one dimension). Notice that, as required,
it succeeds in separating the positive from the negative points.

Radial-basis kernel
(large o)

."| .

|4

6.034 - Spring 03 + 21 (}

Images by Patrick Winston

file:///CJ/Documents%20and%20Settings/Admini strator/My%2...hing/6.034/04/l essons/ Chapter4/linearneural -handout.html (29 of 48)2/8/2007 1:49:35 PM



6.034 Artificial Intelligence. Copyright © 2006 by Massachusetts Institute of Technology. All rights reserved

Another radial-basis example Slide4.5.22

(small o) If aspaceistruly convoluted, you can always cover it with aradial basis solution with small-enough

sigma. In extreme cases, like this one, each of the four plus and four minus samples has become a
support vector, each specialized to the small part of the total spacein itsvicinity. Thisisbasically similar
to 1-nearest neighbor and is just as powerful and subject to overfitting.

Image by Patrick Winston

6.034 - Spring 03 » 22 ‘4

Slide4.5.23
Cross-Validation Error
At this point alarm bells may be ringing. By creating these very high dimensional feature vectors, are we
just setting ourselves up for severe overfitting? Intuitively, the more parameters we have the better we
can fit the input, but that may not lead to better performance on new data.

e Does mapping to a very high-dimensional space
lead to over-fitting?
¢ Generally, no, thanks to the fact that only the

It turns out that the fact that the SVM decision surface depends only on the support vectors and not support vectors determine the decision surface.

directly on the dimensionality of the space comes to our rescue.

6.034 - Spring 03 + 23 (E

Slide4.5.24
Cross-Validation Error

We can estimate the error on new data by computing the cross-validation error on the training data. If we

e Does mapping to a very high-dimensional space
lead to over-fitting?

e Generally, no, thanks to the fact that only the
support vectors determine the decision surface.

» The expected leave-one-out cross-validation error
depends on number of support vectors, not
dimensionality of feature space.

Expected # support vectors

Expected CV error < —
# training samples

look at the linearly separable case, it is easy to see that the expected value of leave-one-out cross-
validation error is bounded by the proportion of support vectors.

If we take a data point that is not a support vector from the training set, the computation of the separator
will not be affected and so it will be classified correctly. If we take a support vector out, then the
classifier will in general change and there may be an error. So, the expected generalization error depends
on the number of support vectors and not on the dimension.

Note that using aradia basis kernel with very small sigma gives you a high expected number of support

vectors and therefore a high expected cross-validation error, as expected. Y et, aradia basis kernel with
large sigma, athough of similar dimensionality, has fewer expected support vectors and islikely to
generalize better.

o If most data points are support vectors, a sign of
possible overfitting, independent of the
dimensionality of feature space.

We shouldn't take this bound too serioudly; it is not actually very predictive of generalization
sose-senges e24 performance in practice but it does point out an important property of SVMs - that generalization

performance is more related to expected number of support vectors than to dimensionality of the
transformed feature space.

Slide4.5.25
Summary
So, let's summarize the SVM story. One key point is that SVMs have a training method that guarantees a . .
unique global optimum. This eliminate many headaches in other approaches to machine learning. * A single global optimum

* Quadratic programming or gradient descent

6.034 - Spring 03 25 (E
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Slide 4.5.26
Summary
. . The other advantage of SVMsisthat there are relatively few parameters to be chosen: C, the constant
* A single global maximum used to trade off classification error and width of the margin; and the kernel parameter, such as sigmain
e Quadratic programming or gradient descent theradial basis kernel.
e Fewer parameters
« C and kernel parameters (n for polynomial, o for These can both be continuous parameters and so there still remains a search requiring some form of
radial basis kernel) ! validation, but these are few parameters compared to some of the other methods.
som-spnges 26 @
Slide4.5.27

Summary
And, last but not least, isthe kernel trick. That is, that the whole process depends only on the dot . .
products of the feature vectors, which is the key to the generalization to non-linear classifiers. * A single global maximum
e Quadratic programming or gradient descent
e Fewer parameters
e C and kernel parameters (n for polynomial, o for
radial basis kernel)
e Kernel
* Quadratic minimization depends only on dot
products of sample vectors
e Recognition depends only on dot products of
unknown vector with sample vectors
e Reliance on only dot products enables efficient
feature mapping to higher-dimensional spaces
where linear separation is more effective.

6.034 - Spring 03 + 27 4

Slide4.5.28
Real Data The linear separator is very simple hypothesis class but it can perform very well on appropriate data sets.
On the Wisconsin breast cancer data, the maxima margin classifier, with alinear kernel, does as well or
better as any of the other classifiers we have seen on held-out data. Note that only 37 of the 512 training
¢ 9 features points are support vectors.
oC=1
e 37 support vectors are used from 512 training
data points
e 12 prediction errors on training set (98%
accuracy)
*96% accuracy on 171 held out points
¢ Essentially same performance as nearest
neighbors and decision trees
e Don't expect such good performance on every data
set.

e Wisconsin Breast Cancer Data

6.034 - Spring 03 + 28 (E

Slide4.5.29
SVMs have proved useful in awide variety of applications, particularly those with large numbers of Success Stories
features, such asimage and text recognition problems. They are the method of choicein text
classification problems, such as categorization of news articles by topic, or spam detection, because they
can work in a huge feature space (typically with alinear kernel) without too much fear of overfitting. » Gene microarray data

e outperformed all other classifiers

e specially designed kernel

e Text categorization
e linear kernel in >10,000 D input space
® best prediction performance

e 35 times faster to train than next best classifier
(decision trees)

¢ Many others:
http://www.clopinet.com/isabelle/Projects/SVM/applist.html

6.034 - Spring 03 + 29 (E
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6.034 Notes: Section 4.6

Side461 ' o L Feature Selection

In many machine-learning applications, there are huge numbers of features. In text classification, you

often have as many features as there are words in the dictionary. Gene expression arrays have five to ¢ In many machine learning applications, there are
fifty thousand elements. Images can have as many as 512 by 512 pixels. huge numbers of features

o text classification (# words)
e gene arrays (5,000 - 50,000)
eimages (512 x 512 pixels)

@ 6.034 - Spring 03 + 1

Slide 4.6.2
Feature Selection When there are lots of featuresin adomain, it can make some machine learning algorithms run much too
i X . slowly. Worse, it often causes overfitting problems: most classifiers have a complexity related to the
* In many machine learning applications, there are number of features, and in many of these cases we can have many more features than training examples,
huge numbers of features which doesn't give us much confidence in our parameter estimates.
o text classification (# words)
e gene arrays (5,000 - 50,000)
eimages (512 x 512 pixels)
* Too many features
e make algorithms run slowly
e risk overfitting
@ 6.034 - Spring 03 » 2
Slide4.6.3
There are two approaches to dealing with very large feature spaces: oneisto select a subset of the given Feature Selection
set of features to work with; the other is to make new features that are supposed to describe the input . . L
space more efficiently than the given set of features. ¢ In many machine learning applications, there are
huge numbers of features

o text classification (# words)
e gene arrays (5,000 - 50,000)
eimages (512 x 512 pixels)
e Too many features
* make algorithms run slowly
e risk overfitting
e Find a smaller feature space
e subset of existing features
e new features constructed from old ones

@ 6.034 - Spring 03 + 3
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Slide4.6.4
Feature Ranking The simplest feature-sel ection strategy is to compute some score for each feature, and then select the k

) features with the highest rankings.
e For each feature, compute a measure of its relevance

to the output
» Choose the k features with the highest rankings
» Correlation between feature j and output

Y -X)' - 7)
\/z O -X Y2 -yY

A popular feature score is the correlation between afeature and the output variable. It measures the
degree to which afeature varies with the output, and is usable when the output is discrete or continuous.

R(J) =

o1 i 1
5 =ivx o yilyy

e Correlation measures how much x tends to deviate
from its mean on the same examples on which y
deviates from its mean

@ 6.034 - Spring 03 » 4

Slide4.6.5
We computed the correlations of each of the featuresin the heart disease data set with the output. They Correlations in Heart Data
are shown here in sorted order, with reference to the decision tree we learned on this data.

We can see that most of the features used in the tree show up among the top features, ranked according th:;:

to correlation. Y ou can see the features with a positive correlation score indicate that heart disease is thal=3
more likely, and those with a negative score indicate that it isless likely. 1;::12
(=] eal
thalach
Top exang
of slope=1
25 slope=2
cp=3
sex
ca=2
cp=2
ca=1

N age

@ 6.034 - Spring 03 + §

Slide 4.6.6

Correlations in MPG > 22 data Here's asimilar figure for the auto fuel efficiency data. It's interesting to see that the highest-correlation
featureis binary choice about whether there are 4 cylinders. It looks like binary features have a tendency
to be preferred (since the output is binary, as well, and so they often match up perfectly). But
displacement is also very highly ranked, and probably contains more information than the number of
cylinders.

cyl=4
displacement
weight
horsepower
cyl=8
origin=1
model-year
origin=3
cyl=6
acceleration
origin=2

@ 6.034 - Spring 03 + 6

Slide4.6.7
Asusua, XOR will cause us trouble if we do scoring of single features. In an XOR problem, each XOR Bites Back

feature will, individually, have a correlation of O with the output. . . . .
o As usual, functions with XOR in them will cause us

To solve xor problems, we need to look at groups of features together. trouble

e Each feature will, individually, have a correlation
of 0 (it occurs positively as much as negatively
for positive outputs)

* To solve XOR, we need to look at groups of
features together

@ 6.034 - Spring 03 + 7
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Slide 4.6.8
Subset Selection Ideally, we'd like to try all possible subsets of the features and see which one works best. We can
evaluate a subset of features by training a classifier using just that subset, and then measuring the

* Consider subsets of variables performance using training set or cross-validation error.

¢ too hard to consider all possible subsets

e wrapper methods: use training set or cross- Instead of trying all subsets, we'll consider greedy methods that add or subtract features one at atime.
validation error to measure the goodness of
using different feature subsets with your
classifier

e greedily construct a good subset by adding or
subtracting features one by one

@ 6.034 - Spring 03 + 8

Side 4.6.9

In the forward selection method, we start with no features at all in our feature set. Then, for each feature, Forward Selection

we consider adding it to the feature set: we add it, train a classifier, and see how well it performs (on a . . .

separate validation set or by using cross-validation). We then add the feature that generated the best Given a particular classifier you want to use

F={}

classifier to our existing set and continue.
For each f;

WEell terminate the algorithm when we have as many features as we can handle, or when the error has Train classifiex with inpute F + {£,)
quit decreas ng Add f] that results in lowest-error classifier
) to F

Continue until F is the right size, or error has
quit decreasing

@ 6.034 - Spring 03 + 9

Slide 4.6.10
Forward Selection Decision trees work sort of like this: they add features one at atime, choosing the next feature in the

. . o context of the ones already chosen. However, they establish awhole tree of feature-selection contexts.
Given a particular classifier you want to use

F={}
For each f;
Train classifier with inputs F + {fy}

Add f, that results in lowest-error classifier
to F

Continue until F is the right size, or error has
quit decreasing

e Decision trees, by themselves, do something
similar to this

@ 6.034 - Spring 03 10

Side4.6.11

Even if we do forward selection, XOR can cause us trouble. Because we only consider adding features Forward Selection

one by one, neither of the features will look particularly attractive individually, and so we would be . . .

unlikely to add them until the very end. Given a particular classifier you want to use

F={}
For each f,
Train classifier with inputs F + {fy}

Add f, that results in lowest-error classifier
to F

Continue until F is the right size, or error has
quit decreasing

e Decision trees, by themselves, do something
similar to this

e Trouble with XOR

@ 6.034 - Spring 03 + 11
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Slide 4.6.12
Backward Elimination Backward elimination worksin the other direction. It starts with all the featuresin the feature set and

) ) - eliminates them one by one, removing the one that results in the best classifier at each step.
Given a particular classifier you want to use

F = all features This strategy can cope effectively with XOR-like problems. But it might be impractical if the initial
For each f, feature set is so large that it makes the algorithm to slow to run.
Train classifier with inputs F - {f]}

Remove f; that results in lowest-error
classifier from F
Continue until F is the right size, or error
increases too much

som-somg02 ez g
Slide 4.6.13 .

Here'saplot of the cross-validation accuracy against number of features chosen by forward selection on Forward Selection on Auto Data
the auto data. The classifier we used was nearest neighbor.

Here we can see that adding features improves cross-validation accuracy until the last couple of features. 527isdsz;tion -~

If there were alarge number of relatively noisy features, adding them would make the performance go BCOUIREY” LW

down even further, asthey would give the classifier further opportunity for overfitting.

' 2 2 A s c B o s W o
number of features added

6.034 - Spring 03 + 13 4

Side4.6.14
Backward Elimination on Auto Data The picture for backward elimination is similar. But notice that it seems to work a bit better, even when
we are eliminating alot of features. This may be because it can decide which features to eliminate in the
cross- BasoardSelcin - uto context of all the other features. Forward selection, especially in the early phases, picks features without
validation ~ ° much context.
accuracy 0 — —
‘ | nzlmbér of ;eatLI;es e;imin;ted | ’ ‘
@ 6.034 - Spring 03 « 14
Slide4.6.15 "
On the heart data, we need about 8 features before we're getting reasonably good performance. The Forward Selection on Heart Data
accuracies are pretty erratic after that; it's probably an indication of overall variance in the performance Forwrd Sescton. Hear
estimates.

CraEs~ oh
validation
accuracy 004

076 | B | [ |
om - —
o1z

102 3 4 5 B 7 8 8 101 12 13 18 1515 17 8 19 M 2 2 W M I

number of features added

@ 6.034 - Spring 03 « 15
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Backward Elimination on Heart Data
Backward Eiminatin -Heart
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validation _
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number of features eliminated
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Slide 4.6.17

Backward elimination and forward selection can be computationally quite expensive, because they
require you, on each iteration, to train approximately as many classifiers as you have features.

In some classifiers, such as linear support-vector machines and linear neural networks, it's possible to do
backward elimination more efficiently. Y ou train the classifier once, and then remove the feature that has

the smallest input weight.

These methods can be extended to non-linear SVMs and neural networks, but it gets somewhat more

complicated there.

6.034 Artificial Intelligence. Copyright © 2006 by Massachusetts Institute of Technology. All rights reserved

We can see similar performance with backward elimination. It's possible to get rid of alot of features
before performance suffers dramatically. And, it really seems to be worthwhile to eliminate some of the
features, from a performance perspective.

®

Recursive Feature Elimination

Train a linear SVM or neural network
Remove the feature with the smallest weight
Repeat

e More efficient than regular backward elimination
® Requires only one training phase per feature

6.034 - Spring 03 + 17

Clustering

e Form clusters of inputs
* Map the clusters into outputs

the associated output

6.034 - Spring 03 » 18

®

* Given a new example, find its cluster, and generate

Slide4.6.18

Slide 4.6.19

So, in this case, we might divide the input pointsinto 4 clusters. The stars indicate the cluster centers.

Another whole strategy for feature selection is to make new features. One very drastic method isto try to
cluster all of the inputsin your data set into arelatively small number of groups, and then learn a
mapping from each group into an output.

Clustering

e Form clusters of inputs
e Map the clusters into outputs

* Given a new example, find its cluster, and generate
the associated output

..ik.... .:ﬁ: °
. ° .
&
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Slide 4.6.20
Clustering Then, for each cluster, we would assign the majority class. Now, to predict the value of a new point, we

. would see which region it would land in, and predict the associated class.
e Form clusters of inputs

* Map the clusters into outputs Thisis different from nearest neighbors in that we actually discard all the data except the cluster centers.
¢ Given a new example, find its cluster, and generate This has the advantage of increasing interpretability, since the cluster centers represent "typical” inputs.
the associated output

@ 6.034 - Spring 03 « 20

Slide4.6.21
So, what makes a good clustering? There are lots and lots of different technical choices. The basic ideais Clustering Criteria
usually that you want to have clusters in which the distance between points in the same group is small

and the distance between pointsin different groups s large. e small distances between points within a cluster

e large distances between clusters
Clustering, like nearest neighbor, requires a distance metric, and the results you get are as scale-sensitive
asthey arein nearest-neighbor.  Need a distance measure, as in nearest neighbor

@ 6.034 - Spring 03 + 21

Slide4.6.22
K-Means Clustering One of the simplest and most popular clustering methods is K-means clustering. It tries to minimize the
. L sum, over al the clusters, of the variance of the points within the cluster (the distances of the points to
* Tries to minimize the geometric center of the cluster).
r—[ squared dist from ) ) ) ) )
A point to mean Unfortunately, it only manages to get to alocal optimum of this measure, but it's usually fairly
Yy X'—,u‘z reasonable.
7
J=lieS;
-~ /
elements of mean of elts
cluster j in cluster j
* Only gets, greedily, to a local optimum
@ 6.034 - Spring 03 « 22
Slide 4.6.23 .
Hereisthe code for the k-means clustering algorithm. Y ou start by choosing k, your desired number of K-means Algorithm

clusters. Then, you can randomly choose k of your data points to serve astheinitial cluster centers. Choose k

Randomly choose k points Cj to be cluster centers

@ 6.034 - Spring 03 + 23
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®

K-means Algorithm

Choose k
Randomly choose k points Cj to be cluster centers
Loop

Partition the data into k classes Sj according
to which of the Cj they’re closest to

For each 8j, compute the mean of its elements
and let that be the new cluster center

6.034 - Spring 03 » 24

Slide4.6.25

We stop when the centers quit moving. This process is guaranteed to terminate.

®

K-means Algorithm

Choose k
Randomly choose k points Cj to be cluster centers
Loop

Partition the data into k classes Sj according
to which of the Cj they’re closest to

For each 8j, compute the mean of its elements
and let that be the new cluster center

Stop when centers quit moving

e Guaranteed to terminate
o If a cluster becomes empty, re-initialize the center

6.034 - Spring 03 + 26

Slide 4.6.27

Here's arunning example simulation of the k-means algorithm. We start with this set of input points.

Slide4.6.24

Then, we enter aloop with two steps. The first step isto divide the data up into k classes, using the
cluster centers to make a Voronoi partition of the data. That is, we assign each data point to the cluster
center that it's closest to.

Now, for each new cluster, we compute a new cluster center by averaging the elements that were
assigned to that cluster on the previous step.

K-means Algorithm

Choose k
Randomly choose k points Cj to be cluster centers
Loop
Partition the data into k classes Sj according
to which of the Cj they’re closest to
For each 8j, compute the mean of its elements
and let that be the new cluster center

Stop when centers quit moving

e Guaranteed to terminate

@ 6.034 - Spring 03 + 25

Slide 4.6.26

One possible problem is that cluster centers can become "orphaned"”. That is, they no longer have any
pointsin them (or perhaps just asingle point). A standard method for dealing with this problemis simply
to randomly re-initialize that cluster center.

K-Means Example

@ 6.034 - Spring 03 27
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Slide4.6.28
K-Means Example And randomly pick 4 of them to be our cluster centers.
[ ]
w o © ® o ©
e © .. hd
I * .
o
°
* ﬁ
® o Y
°, oo ©
Slide 4.6.29
Now we partition the data, assigning each point to the center to which it is closest. K-Means Example
°
& . ® ® o ®
e © 0. .
o ° ° o
o W
°
® o L
° ® e ©
Slide 4.6.30
K-Means Example We move each center to the mean of the points that belong to it.
o o
°
e © o ©
) % .. © °
L] o
@ .. itx’
* o
° (@)
® o * o
°, ® e ©
@ 6.034 - Spring 03 » 30
Slide 4.6.31
Having moved the means, we can now do a new reassignment of points. K-Means Example
° o
°
e © o ©
e % o° © o
()
[ J .. *
* °
e o ® ¥
. oo ©
@ 6.034 - Spring 03 « 31
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Slide4.6.32
K-Means Example And recompute the centers.
[ ]
® o0 °© 5 0
° o® © O‘A’
o ° o
° o
o
* o9 °
° o 0
°, oo ©
Slide 4.6.33
Here we reassign one more point to the green cluster, K-Means Example
°
* 2. ® o ®
o T¥o o Y
o ° ° o
[ ]
°
* Y °
® o ®
° o ©
Slide 4.6.34
K-Means Example Which causes the green and blue centers to move abit. At this point, the red and yellow clusters are
stable.
o
o © * o ©
o oke® o Y
o0 ° ° o
° o
e )
. %
° ® o
@ 6.034 - Spring 03 « 34
Slide 4.6.35
Now two more points get reassigned to green, K-Means Example
°
& s ® o @
o oke® ° *
e ° ° o
° o
$ o
. % “ %
o, oo ®
@ 6.034 - Spring 03 « 35
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Slide 4.6.36
K-Means Example And we recompute the centers, to get a clustering that is stable, and will not change under further
iterations.

[ ]

e o, OO § ©

)

® )
® o
° .
o0 5%
i. L)
Slide 4.6.37 . ¥ -
The k-means algorithm takes a real-valued input space and generates a one-dimensional discrete Principal Components Analysis
description of the inputs. In principal components analysis, we take a real-valued space, and represent . . .
the datain anew multi-dimensional real-valued space with lower dimensionality. The new coordinates * Given an n-dimensional real-valued space, data are
arelinear combinations of the originals. often nearly restricted to a lower-dimensional
subspace
¢ PCA helps us find such a subspace whose
coordinates are linear functions of the originals
L. . Slide4.6.38
Principal Components Analysis Theideaisthat even if your data are described using alarge number of dimensions, they may liein a

lower-dimensional subspace of the original space. So, in thisfigure, the data are described with two
dimensions, but a single dimension that runs diagonally through the data would describe it without losing
too much information.

e Given an n-dimensional real-valued space, data are
often nearly restricted to a lower-dimensional
subspace

* PCA helps us find such a subspace whose
coordinates are linear functions of the originals

@ 6.034 - Spring 03 » 38
Slide 4.6.39 . x =
It's harder to seein three dimensions, but here's a data set that might be effectively described using only Principal Components Analysis

two dimensions. . . .

* Given an n-dimensional real-valued space, data are
often nearly restricted to a lower-dimensional
subspace

* PCA helps us find such a subspace whose
coordinates are linear functions of the originals

000

=
00! =
ooy A0

http://www.okstate.edu/artsci/
C botany/ordinate/PCA. htm
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Slide 4.6.40
Cartoon of algorithm To really understand what's going on in this algorithm, you need to have had linear algebra. We'll just

ive you a"cartoon" idea of how it works.
e Normalize the data (subtract mean, divide by gvey

stdev) We start out by normalizing the data (subtracting the mean and dividing by the standard deviation). The
new set of coordinates we construct will have its origin at the centroid of the data.

Slide 4.6.41
Now, we find the single line along which the data have the most variance. It's the dimension that, were Cartoon of algorithm

we to project the data onto it, would result in the most "spread” of the data. We'll let this be our first

principal component. e Normalize the data (subtract mean, divide by

stdev)
¢ Find the line along which the data has the most
variability: that’s the first principal component

Slide4.6.42
Cartoon of algorithm Now, we project the data down into the n-1 dimensional space that's orthogonal to the line we just chose,
and repeat.
e Normalize the data (subtract mean, divide by ®
stdev)
e Find the line along which the data has the most
variability: that’s the first principal component
¢ Project the data into the n-1 dimensional space
orthogonal to the line
e Repeat
@ 6.034 - Spring 03 « 42
Slide 4.6.43 .
The result of this processis anew set of orthogonal axes. Thefirst k of them give alower-dimensional Cartoon of algorithm

ace that represents the variability of the data as well as possible.
* > v P e Normalize the data (subtract mean, divide by

stdev)

e Find the line along which the data has the most
variability: that’s the first principal component

* Project the data into the n-1 dimensional space
orthogonal to the line

® Repeat

e Result is a new orthogonal set of axes

o First k give a lower-D space that represents the
variability of the data as well as possible

@ 6.034 - Spring 03 + 43
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Slide 4.6.44
Cartoon of algorithm

e Normalize the data (subtract mean, divide by
stdev)

¢ Find the line along which the data has the most
variability: that’s the first principal component

¢ Project the data into the n-1 dimensional space
orthogonal to the line

® Repeat

e Result is a new orthogonal set of axes

e First k give a lower-D space that represents the
variability of the data as well as possible

e Really: find the eigenvectors of the covariance
matrix with the k largest eigenvalues

@ 6.034 - Spring 03 « 44

Slide 4.6.45

One problem with PCA (asit'scaled by itsfriends) is that it can only produce a set of coordinates that's
alinear transformation of the originals. But here's a data set that seems to have a fundamentally one-
dimensional structure. Unfortunately, we can't expressits axis as alinear combination of the original
ones. There are some other cool dimensionality reduction technicues that can actually find this structure!

Slide 4.6.46
Insensitive to Classification Task

If you have some experience with linear algebra, then | can tell you that what we really do is find the
eigenvectors of the covariance matrix with the k largest eigenvalues.

®

Linear Transformations Only

There are fancier methods that can find this structure

6.034 - Spring 03 + 45

Another problem with PCA isthat it (like k-Means clustering) ignores the classes of the points. So, in
this example, the principal component is the line that goes between the two classes (it's agreat separator,
but that's not what we're looking for right now).

@ 6.034 - Spring 03 + 46

Slide 4.6.47

Now, if we project the data onto that line (which is what would happen if we wanted to reduce the
dimensionality of our data set to 1), the positive and negative points are completely intermingled, and we
can never get a separator.

There are dimensionality-reduction techniques, also, sadly beyond our scope, that try to optimize the
discriminability of the data rather than its variability, which don't suffer from this problem.
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There are fancier methods that can take class into account
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Validating a Classifier
predicted y
0o 1

true O | A | B
Y 1 |c|D

®

6.034 - Spring 03 » 48

Slide 4.6.49

Case B, in which the answer was supposed to be 0 but the classifier predicted 1 is called a"false Validating a Classifier

positive" or atype 1 error.

Validating a Classifier
predicted y
0o 1

| — | false positive
true 0 A B type 1 error

. Y 1lc|D
false negative
type 2 error

®

6.034 - Spring 03 + 50

Slide 4.6.51

Given these 4 numbers, we can define different characterizations of the classifier's performance. The Validating a Classifier
sensitivity is the probability of predicting a 1 when the actual output is 1. Thisis also called thetrue

positiverate, or TP.

Slide4.6.48

We're just going to tack one additional topic onto the end of this section. It has to do with understanding
how well aclassifier works. So far, we've been thinking about optimizing training error or cross-
validation error, where "error" is measured as the number of examples we get wrong. Let's examine this
alittle more carefully.

In abinary classification problem, on a single example, there are 4 possible outcomes, depending on the
true output value for the input and the predicted output value. In this table, we'll assign values A through
D to be the number of times each of these outcomes happens on a data set.

predicted y
0 1

| — | false positive
true 0 A B type 1 error

Y 1 |c|D

@ 6.034 - Spring 03 + 49

Slide 4.6.50
Case C, in which the answer was supposed to be 1 but the classifier predicted O iscalled a"false
negative" or atype 2 error.

predicted y
0 1

| — | false positive
true O | A | B type 1 error

Y 1tc|D

false negative
e sensitivity: P(predict 1 | actual 1) = D/(C+D)
*“true positive rate” (TP)

@ 6.034 - Spring 03 51
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Validating a Classifier
predicted y
0o 1

| — | false positive
true 0 A B type 1 error

Y 1tc|D

false negative
type 2 error
s sensitivity: P(predict 1 | actual 1) = D/(C+D)

¢ “true positive rate” (TP)

o specificity: P(predict 0 | actual 0) = A/(A+B)

Slide 4.6.52
The specificity is the probability of predicting a0 when the actual output is 0.

Slide 4.6.53
The false-alarm rate is the probability of predicting a 1 when the actual output is 0. Thisis also called Validating a Classifier

the false positive rate, or FP.

predicted y
0 1

Classifiers are usually characterized using sensitivity and specificity, or using TP and FP. | —| false positive
true 0 A B type 1 error

Cost Sensitivity
e Predict whether a patient has pseuditis based on
blood tests
e Disease is often fatal if left untreated
e Treatment is cheap and side-effect free

Y 1tc|D

false negative
e sensitivity: P(predict 1 | actual 1) = D/(C+D)
e “true positive rate” (TP)

e specificity: P(predict 0 | actual 0) = A/(A+B)

o false-alarm rate: P(predict 1 | actual 0) = B/(A+B)
* “false positive rate” (FP)

@ 6.034 - Spring 03 53

Slide 4.6.54

Imagine that you're a physician and you need to predict whether a patient has pseuditis based on the
results of some blood tests. The disease is often fatal if it's |eft untreated, and the treatment is cheap and
relatively side-effect free.

@ 6.034 - Spring 03 « 54
Slide 4.6.55
Y ou have two different classifiers that you could use to make the decision. The first has atrue-positive Cost Sensitivity
rate of 0.9 and afalse-positive rate of 0.4. That meansthat it will diagnose the disease in 90 percent of . . .
the people who actually have it; and also diagnose it in 40 percent of people who don't have . * Predict whether a patient has pseuditis based on

blood tests
e Disease is often fatal if left untreated
* Treatment is cheap and side-effect free

* Which classifier to use?
e Classifier 1: TP = 0.9, FP = 0.4

@ 6.034 - Spring 03 « 55
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Cost Sensitivity

* Predict whether a patient has pseuditis based on
blood tests

¢ Disease is often fatal if left untreated
e Treatment is cheap and side-effect free

e Which classifier to use?

¢ Classifier 1: TP = 0.9, FP = 0.4
e Classifier 2: TP = 0.7, FP = 0.1

@ 6.034 - Spring 03 « 56

Slide 4.6.57

One way to address this problem is to start by figuring out the relative costs of the two types of errors.
Then, for many classifiers, we can build these costs directly into the choice of classification.

In decision trees, we could use a different splitting criterion. For neural networks we could change the
error function to be asymmetric. In SVM's, we could use two different values of C.

Tunable Classifiers

o Classifiers that have a threshold (naive Bayes,
neural nets, SVMs) can be adjusted, post learning,
by changing the threshold, to make different trade-
offs between type 1 and type 2 errors

@ 6.034 - Spring 03 58

Slide 4.6.59
In aparticular application, we can choose a threshold as follows.

Let c1 and c2 be the costs of the two different types of errors; let p be the percentage of positive
examples, let x be the threshold parameter that we are allowed to tune, and let TP(x) and FP(x) be the
true-positive and fal se-positive rates, respectively, of the classifier when the threshold is set to have

vauex.

Then, we can characterize the average, or expected, cost based on this formula, as afunction of x. We

should choose the value of x that will minimize expected cost.

Slide 4.6.56
The second classifier only has a true-positive rate of 0.7, but a more reasonable false positive rate of 0.1.

Given the set-up of the problem, we might choose classifier 1, since all those false positives aren't too
costly (but if it causes too much hassle, per patient, we might not want to bring 40 percent of them back
for treatment).

Build Costs into Classifier

e Assess costs of both types of error
e use a different splitting criterion for decision
trees
e make error function for neural nets asymmetric;
different costs for each kind of error
e use different values of C for SVMs depending on
kind of error

@ 6.034 - Spring 03 + 57

Slide 4.6.58

Often it's useful to deliver aclassifier that istunable. That is, a classifier that has a parameter in it that
can be used, at application time, to change the trade-offs made between type 1 and type 2 errors. Most
classifers that have a threshold (such as naive Bayes, neural nets, or SVMs), can be tuned by changing
the threshold. At different values of the threshold the classifier will tend to make more errors of one type
versus the other.

Tunable Classifiers

o Classifiers that have a threshold (naive Bayes,
neural nets, SVMs) can be adjusted, post learning,
by changing the threshold, to make different trade-
offs between type 1 and type 2 errors

*C,,C,: costs of errors

¢ P: percentage of positive examples

e x: tunable threshold

* TP(x): true positive rate at threshold x

* FP(x): false positive rate at threshold x
® Expected Cost = C,P(1-TP(x)) + C,(1-P)FP(x)
e choose x to minimize expected cost

@ 6.034 - Spring 03 + 59
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Slide 4.6.60

ROC Curves One way to see the overall performance of atunable classifier iswith a ROC curve. ROC stands for

. . L "receiver operating characteristics' from the days of the invention of radar.

* “receiver operating characteristics”

An ROC curveis plotted on two axes; the x axisis the false positive rate and the y axisis the true
17px positive rate. In an ideal world, we would have afalse positive rate of 0 and atrue positive rate of 1,

which would put our performance up near the star on this graph.

TP

FP 1

@ 6.034 - Spring 03 « 60

Slide 4.6.61
In reality, as we adjust the parameter in the classifier, we typically go from asituation in which the ROC Curves
classifier aways outputs 0, which generates no fal se positives and no true positives, to asituation in . . . e
which the classifier aways outputs 1, in which case we have both false positive and true positive rates of * “receiver operating characteristics
1.
-
e 1
always
output 1
TP
6} T

1
FP 1
always
output 0

@ 6.034 - Spring 03 + 61

Slide 4.6.62
ROC Curves The ROC curve itself is a parametric curve; for each value of x, we plot the pair FP(x), TP(x). The curve
N . . . shows the range of possible behaviors of the classifier. It istypicaly shaped something like this blue
* “receiver operating characteristics curve; the higher the false positive rate we can stand, the higher the rate of detecting true positives we
can achieve.
\_ always
output 1
parametric
function of x
0 f
FP 1
always
@ 6.034 - Spring 03 « 62
Slide 4.6.63
Often it is useful to compare two different classifiers by comparing their ROC curves. If we're lucky, ROC Curves
then one curve is aways higher than the other. In such a situation, we'd say that the blue curve . . . h R
dominates the red curve. That means that, no matter what costs apply in our domain, it will be better to * “receiver operating characteristics

use the blue classifier (because, for any fixed rate of false positives, the blue classifier can achieve more
true positives; or for any fixed rate of true positives, the blue classifier can always achieve fewer false \
positives).

output 1
If the curves cross, then it will be better to use one classifier in some cost situations and the other
classifier in other situations.

blue curve
dominates red

FP 1
always
output 0

@ 6.034 - Spring 03 + 63
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Slide 4.6.64
Many more issues! Machine learning is a huge field that we have just begun to cover. Even in the context of supervised

. learning, there are a variety of other issues, including how to handle missing data, what to do when you
* Missing data have very many negative examples and just afew positives (such as when you're trying to detect fraud),
e Many examples in one class, few in other (fraud what to do when getting y values for your x'sis very expensive (you might actively choose which y's

detection) you'd like to have labeled), and many others.
* Expensive data (active learning)
. If you like this topic, take a probability course, and then take the graduate machine learning course.
@ 6.034 - Spring 03 » 64
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