6.034 Introduction to Artificial Intelligence

Machine learning and applications

Problems we will cover

- Computational biology
 - cancer classification
 - functional classification of genes
- Information retrieval
 - document classification/ranking
- Recommender systems
 - predicting user preferences (e.g., movies)

What are we trying to do?

• The goal is to find the right method for the right problem (matching task)

Cancer classification

 We'd like to automatically classify tissue samples according to whether there's evidence of cancer or the type of tumor cells they contain

- What features to extract?
 - visual features due to different types of staining
 - how active different genes are in the cells (gene expression)

Gene expression

(Orphanides et al. 2002)

Measuring gene expression

Basic cDNA micro-array technology

control sample (e.g., tumor)

Measuring gene expression

Basic cDNA micro-array technology

control sample (e.g., tumor)

Cancer classification

tissues (with known tumor type)

Machine learning problem

Machine learning problem

Complicating issues

- micro-array measurements are very noisy
- each training example is of very high dimension (e.g., ~ 10,000 genes)
- there are relatively few labeled tissue samples (only tens per class)
- some labels may be wrong

SVM classifiers

Predicted label

training label example weight

$$\hat{y} = \mathrm{sign}\Big(\sum_{i=1}^n y_i \alpha_i K(\mathbf{x}_i, \mathbf{x}) + w_0\Big)$$

kernel (similarity)

new example

SVM training

 SVMs are trained by solving a quadratic programming problem

minimize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$$

subject to
$$\alpha_i \ge 0$$
, $\sum_{i=1}^n y_i \alpha_i = 0$

(where is w_0 ?)

Back to the problem

- High dimensionality => linear kernel $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + 1)$
- Noise in the measurements => feature selection (use only a relevant subset of the genes)
- Outliers => adjust the kernel to increase resistance to outliers

Feature selection / ranking

 We can rank genes according to how much they seem to be related to the classification task

 $R(\mathrm{gene}_i) = \frac{|\mu_i^+ - \mu_i^-|}{\sigma^+ + \sigma^-}$ $\mathrm{stdv\ across} + \mathrm{I}\ \mathrm{tissues}$ genes $\mathrm{stdv\ across} + \mathrm{I}\ \mathrm{tissues}$

of examples, dimensionality

- Suppose the expression levels of all the 10,000 genes in each tissue sample are drawn at random from some distribution (e.g., normal)
- Based on 5 such expression vectors for each class, can we find a gene that is perfectly correlated with the labels?
- The chance of this happening is 100%
- What if we have had instead 10 such vectors per class? The probability drops to 1%

Dealing with outliers

 We should make the linear decision boundary resistant to outliers (e.g., due to mislabeled samples)

Dealing with outliers

 One way to increase resistance to outliers is to add a diagonal term to the kernel function so that each example appears more similar to itself than before.

$$K \leftarrow \begin{bmatrix} K(x_1, x_1) + \lambda & \cdots & K(x_1, x_n) \\ \cdots & \cdots & \cdots \\ K(x_n, x_1) & \cdots & K(x_n, x_n) + \lambda \end{bmatrix}$$

Results

- AML vs MML distinction
 - training set: 27 ALL and 11 AML
 - test set: 20 ALL and 14 ALM

 The SVM classifier achieves perfect classification of the test samples

Problems we will cover

- Computational biology
 - cancer classification
 - functional classification of genes
- Information retrieval
 - document classification/ranking
- Recommender systems
 - predicting user preferences (e.g., movies)

Functional classification of genes

- We don't know what most genes do
- Given known roles for some genes, we would like to predict the function of all the remaining genes

ribosomal genes

unannotated "genes"

 $\begin{cases} F2N1.3\\ T18A10.9\\ F5J6.12\\ \dots \end{cases}$

YLA003W YPL037C

Tissue/gene profiles

Tissue/gene profiles

Machine learning problem

known - I gene

- Dimensionality no longer very high (# of tissue samples/conditions)
- Can use other kernels, e.g., radial basis kernel
- New problem: there are much more negatively labeled genes than positive

 In order to ensure that the classifier pays attention to the positive class, we increase (proportionally) resistance to negative examples

$$K \leftarrow \begin{bmatrix} K(x_1, x_1) + \lambda(n^+/n) & \cdots & K(x_1, x_n) \\ \cdots & \cdots & \cdots \\ K(x_n, x_1) & \cdots & K(x_n, x_n) + \lambda(n^-/n) \end{bmatrix}$$

freq. of positive examples freq. of negative examples

Differential resistance

Differential resistance

Functional annotation of genes

- SVMs perform very well (though there are other comparable methods)
- Learning methods can identify incorrectly annotated genes, predict functional roles for uncharacterized genes, as well as guide further experimental effort
- Used in many contexts; based on profiles, text, and/or sequence
 - e.g., understanding developmental roles of genes (lineage specific genes)
 - etc.

Problems we will cover

- Computational biology
 - cancer classification
 - functional classification of genes
- Information retrieval
 - document classification/ranking
- Recommender systems
 - predicting user preferences (e.g., movies)