
6.034 Introduction to Artificial 
Intelligence

Machine learning and applications



Problems we will cover

• Computational biology
- cancer classification

- functional classification of genes

• Information retrieval
- document classification/ranking

• Recommender systems
- predicting user preferences (e.g., movies)



What are we trying to do?

• The goal is to find the right method for the 
right problem (matching task)

ProblemsMethods

SVMs

Boosting

K-means
. . . . . .

This paper shows that the
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with a large pool of unlabeled
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Cancer classification

• We’d like to automatically classify tissue 
samples according to whether there’s evidence 
of cancer or the type of tumor cells they 
contain

• What features to extract? 
- visual features due to different types of staining

- how active different genes are in the cells (gene 
expression)
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Gene expression
Review
441

Figure 2. A Contemporary View of Gene Expression

Recent findings suggest that each step regulating gene expression (from transcription to translation) is a subdivision of a continuous process.
In this contemporary view of gene expression, each stage is physically and functionally connected to the next, ensuring that there is efficient
transfer between manipulations and that no individual step is omitted (see text for details).

transcript is spooling off the transcribing RNAP II. The containing two copies each of four histone proteins:
H2A, H2B, H3, and H4 (Luger et al., 1997). These small,picture that is emerging is one in which most steps are

physically and functionally connected—conveyor belt- positively charged proteins show remarkable conserva-
tion among eukaryotes and are the protein buildingstyle—ensuring efficient transfer from one manipulation

to the next (Figure 2). This organization of events may blocks of our chromosomes. Further compaction of our
genes is achieved via poorly defined levels of higher-also introduce a series of quality control mechanisms,

as it ensures that no individual step is omitted. order nucleosome folding.
Once thought of as being a static organizationalThe results of a large body of work have revealed at

least three general principles. (1) The protein factors framework for DNA, it is now apparent that chromatin
plays a pivotal role in regulating gene transcription byresponsible for each individual step in the pathway from

gene to protein are functionally, and sometimes physi- marshalling access of the transcriptional apparatus to
cally, connected. (2) Regulation of the pathway is con- genes (reviewed by Narlikar et al., 2002 [this issue of
trolled at multiple stages. (3) No general rules exist de- Cell]). However, not all chromatin is equal. Untran-
scribing how the pathway is regulated. Different classes scribed regions of the genome are packaged into highly
of gene are regulated at different stages. condensed “heterochromatin,” while transcribed genes

In this review, we focus on novel paradigms that de- are present in more accessible “euchromatin” (reviewed
scribe the functioning and regulation of the gene expres- by Richards and Elgin, 2002 [this issue of Cell]). Each
sion pathway and the connections that exist between cell type packages its genes into a unique pattern of
the constituent steps of this process. heterochromatin and euchromatin, and this pattern is

maintained after cell division. The pattern of packaging
into these alternative chromatin states determinesThe Role of Chromatin Structure in Gene
which genes will be active in a newly divided cell, thusExpression: Not Just Packaging
ensuring that the unique characteristics of each cellThe DNA in our cells is not naked, but packaged into a
lineage are transferred from generation to generation.highly organized and compact nucleoprotein structure
To activate gene expression, transcriptional activatorknown as chromatin. The basic organizational unit of
proteins must, therefore, contend with inaccessible andchromatin is the nucleosome, which consists of 146 bp

of DNA wrapped almost twice around a protein core repressive chromatin structures. As we discuss below,

(Orphanides et al. 2002)



Measuring gene expression

• Basic cDNA micro-array technology
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sample (e.g., tumor)control

Tissue profile
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Measuring gene expression

• Basic cDNA micro-array technology
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Cancer classification
tissues (with known tumor type)

genes
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(Golub et al. 1999)



Machine learning problem
6.034 Artificial Intelligence. Copyright © 2006 by Massachusetts Institute of Technology. All rights reserved

Slide 4.3.3 

This one seems safer, no? 

Another way to motivate the choice of the maximal margin separator is to see that it reduces the 

"variance" of the hypothesis class. Recall that a hypothesis has large variance if small changes in the data 

result in a very different hypothesis. With a maximal margin separator, we can wiggle the data quite a bit 

without affecting the separator. Placing the separator very close to positive or negative points is a kind of 

overfitting; it makes your hypothesis very dependent on details of the input data. 

Let's see if we can figure out how to find the separator with maximal margin as suggested by this picture. 

Slide 4.3.4 

First we have to define what we are trying to optimize. Clearly we want to use our old definition of 

margin, but we'll have to deal with a couple of issues first. Note that we're using the w, b notation instead 

of w bar, because we will end up giving b special treatment in the future. 

Slide 4.3.5 

Remember that any scaling of w and b defines the same line; but it will result in different values of 

gamma. To get the actual geometric distance from the point to the separator (called the geometric 

margin), we need to divide gamma through by the magnitude of w. 

Slide 4.3.6 

The next issue is that the we have defined the margin for a point relative to a separator but we don't want 

to just maximize the margin of some particular single point. We want to focus on one point on each side 

of the separator, each of which is closest to the separator. And we want to place the separator so that the 

it is as far from these two points as possible. Then we will have the maximal margin between the two 

classes. 

Since we have a degree of freedom in the magnitude of w we're going to just define the margin for each 

of these points to be 1. (You can think of this 1 as having arbitrary units given by the magnitude of w.) 

You might be worried that we can't possibly know which will be the two closest points until we know 

what the separator is. It's a reasonable worry, and we'll sort it out in a couple of slides. 

file:///C|/Documents%20and%20Settings/Administrator/My%2...hing/6.034/04/lessons/Chapter4/linearneural-handout.html (18 of 48)2/8/2007 1:49:35 PM
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Machine learning problem

• Complicating issues
- micro-array measurements are very noisy

- each training example is of very high dimension 
(e.g., ~ 10,000 genes)

- there are relatively few labeled tissue samples (only 
tens per class)

- some labels may be wrong
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Slide 4.3.3 

This one seems safer, no? 

Another way to motivate the choice of the maximal margin separator is to see that it reduces the 

"variance" of the hypothesis class. Recall that a hypothesis has large variance if small changes in the data 

result in a very different hypothesis. With a maximal margin separator, we can wiggle the data quite a bit 

without affecting the separator. Placing the separator very close to positive or negative points is a kind of 

overfitting; it makes your hypothesis very dependent on details of the input data. 

Let's see if we can figure out how to find the separator with maximal margin as suggested by this picture. 

Slide 4.3.4 

First we have to define what we are trying to optimize. Clearly we want to use our old definition of 

margin, but we'll have to deal with a couple of issues first. Note that we're using the w, b notation instead 

of w bar, because we will end up giving b special treatment in the future. 

Slide 4.3.5 

Remember that any scaling of w and b defines the same line; but it will result in different values of 

gamma. To get the actual geometric distance from the point to the separator (called the geometric 

margin), we need to divide gamma through by the magnitude of w. 

Slide 4.3.6 

The next issue is that the we have defined the margin for a point relative to a separator but we don't want 

to just maximize the margin of some particular single point. We want to focus on one point on each side 

of the separator, each of which is closest to the separator. And we want to place the separator so that the 

it is as far from these two points as possible. Then we will have the maximal margin between the two 

classes. 

Since we have a degree of freedom in the magnitude of w we're going to just define the margin for each 

of these points to be 1. (You can think of this 1 as having arbitrary units given by the magnitude of w.) 

You might be worried that we can't possibly know which will be the two closest points until we know 

what the separator is. It's a reasonable worry, and we'll sort it out in a couple of slides. 
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SVM classifiers

6.034 Artificial Intelligence. Copyright © 2006 by Massachusetts Institute of Technology. All rights reserved

Slide 4.3.3 

This one seems safer, no? 

Another way to motivate the choice of the maximal margin separator is to see that it reduces the 

"variance" of the hypothesis class. Recall that a hypothesis has large variance if small changes in the data 

result in a very different hypothesis. With a maximal margin separator, we can wiggle the data quite a bit 

without affecting the separator. Placing the separator very close to positive or negative points is a kind of 

overfitting; it makes your hypothesis very dependent on details of the input data. 

Let's see if we can figure out how to find the separator with maximal margin as suggested by this picture. 

Slide 4.3.4 

First we have to define what we are trying to optimize. Clearly we want to use our old definition of 

margin, but we'll have to deal with a couple of issues first. Note that we're using the w, b notation instead 

of w bar, because we will end up giving b special treatment in the future. 

Slide 4.3.5 

Remember that any scaling of w and b defines the same line; but it will result in different values of 

gamma. To get the actual geometric distance from the point to the separator (called the geometric 

margin), we need to divide gamma through by the magnitude of w. 

Slide 4.3.6 

The next issue is that the we have defined the margin for a point relative to a separator but we don't want 

to just maximize the margin of some particular single point. We want to focus on one point on each side 

of the separator, each of which is closest to the separator. And we want to place the separator so that the 

it is as far from these two points as possible. Then we will have the maximal margin between the two 

classes. 

Since we have a degree of freedom in the magnitude of w we're going to just define the margin for each 

of these points to be 1. (You can think of this 1 as having arbitrary units given by the magnitude of w.) 

You might be worried that we can't possibly know which will be the two closest points until we know 

what the separator is. It's a reasonable worry, and we'll sort it out in a couple of slides. 
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SVM training
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Slide 4.3.3 

This one seems safer, no? 

Another way to motivate the choice of the maximal margin separator is to see that it reduces the 

"variance" of the hypothesis class. Recall that a hypothesis has large variance if small changes in the data 

result in a very different hypothesis. With a maximal margin separator, we can wiggle the data quite a bit 

without affecting the separator. Placing the separator very close to positive or negative points is a kind of 

overfitting; it makes your hypothesis very dependent on details of the input data. 

Let's see if we can figure out how to find the separator with maximal margin as suggested by this picture. 

Slide 4.3.4 

First we have to define what we are trying to optimize. Clearly we want to use our old definition of 

margin, but we'll have to deal with a couple of issues first. Note that we're using the w, b notation instead 

of w bar, because we will end up giving b special treatment in the future. 

Slide 4.3.5 

Remember that any scaling of w and b defines the same line; but it will result in different values of 

gamma. To get the actual geometric distance from the point to the separator (called the geometric 

margin), we need to divide gamma through by the magnitude of w. 

Slide 4.3.6 

The next issue is that the we have defined the margin for a point relative to a separator but we don't want 

to just maximize the margin of some particular single point. We want to focus on one point on each side 

of the separator, each of which is closest to the separator. And we want to place the separator so that the 

it is as far from these two points as possible. Then we will have the maximal margin between the two 

classes. 

Since we have a degree of freedom in the magnitude of w we're going to just define the margin for each 

of these points to be 1. (You can think of this 1 as having arbitrary units given by the magnitude of w.) 

You might be worried that we can't possibly know which will be the two closest points until we know 

what the separator is. It's a reasonable worry, and we'll sort it out in a couple of slides. 
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minimize
n∑

i=1

αi −
1
2

∑

i,j

yiyjαiαjK(xi,xj)

subject to αi ≥ 0,
n∑

i=1

yiαi = 0

(where is w0?)

• SVMs are trained by solving a 
quadratic programming problem



Back to the problem
6.034 Artificial Intelligence. Copyright © 2006 by Massachusetts Institute of Technology. All rights reserved

Slide 4.3.3 

This one seems safer, no? 

Another way to motivate the choice of the maximal margin separator is to see that it reduces the 

"variance" of the hypothesis class. Recall that a hypothesis has large variance if small changes in the data 

result in a very different hypothesis. With a maximal margin separator, we can wiggle the data quite a bit 

without affecting the separator. Placing the separator very close to positive or negative points is a kind of 

overfitting; it makes your hypothesis very dependent on details of the input data. 

Let's see if we can figure out how to find the separator with maximal margin as suggested by this picture. 

Slide 4.3.4 

First we have to define what we are trying to optimize. Clearly we want to use our old definition of 

margin, but we'll have to deal with a couple of issues first. Note that we're using the w, b notation instead 

of w bar, because we will end up giving b special treatment in the future. 

Slide 4.3.5 

Remember that any scaling of w and b defines the same line; but it will result in different values of 

gamma. To get the actual geometric distance from the point to the separator (called the geometric 

margin), we need to divide gamma through by the magnitude of w. 

Slide 4.3.6 

The next issue is that the we have defined the margin for a point relative to a separator but we don't want 

to just maximize the margin of some particular single point. We want to focus on one point on each side 

of the separator, each of which is closest to the separator. And we want to place the separator so that the 

it is as far from these two points as possible. Then we will have the maximal margin between the two 

classes. 

Since we have a degree of freedom in the magnitude of w we're going to just define the margin for each 

of these points to be 1. (You can think of this 1 as having arbitrary units given by the magnitude of w.) 

You might be worried that we can't possibly know which will be the two closest points until we know 

what the separator is. It's a reasonable worry, and we'll sort it out in a couple of slides. 
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+1 -1

?

• High dimensionality => linear kernel

• Noise in the measurements => feature 
selection (use only a relevant subset of the 
genes)

• Outliers => adjust the kernel to increase 
resistance to outliers

K(xi,xj) = (xT
i xj + 1)



Feature selection / ranking

• We can rank genes according to how much 
they seem to be related to the classification 
task

R(genei) =
|µ+

i − µ−i |
σ+ + σ−

mean value across +1 tissues mean value across -1 tissues

stdv across +1 tissues

stdv across -1 tissues

genes



# of examples, dimensionality

• Suppose the expression levels of all the 10,000 
genes in each tissue sample are drawn at 
random from some distribution (e.g., normal)

• Based on 5 such expression vectors for each 
class, can we find a gene that is perfectly 
correlated with the labels?

• The chance of this happening is 100%

• What if we have had instead 10 such vectors 
per class? The probability drops to 1%



Dealing with outliers

• We should make the linear decision boundary 
resistant to outliers (e.g., due to mislabeled 
samples)

−5 0 5−5

0

5

−5 0 5−5

0

5



Dealing with outliers

• One way to increase resistance to outliers is 
to add a diagonal term to the kernel function 
so that each example appears more similar to 
itself than before.

K ←




K(x1, x1) + λ · · · K(x1, xn)

· · · · · · · · ·
K(xn, x1) · · · K(xn, xn) + λ







The effect of lambda

−5 0 5−5

0

5
λ = 0



The effect of lambda

−5 0 5−5

0

5
λ = 2



The effect of lambda

−5 0 5−5

0

5
λ = 4



The effect of lambda

−5 0 5−5

0

5
λ = 8



The effect of lambda

−5 0 5−5

0

5
λ = 16



Results

• AML vs MML distinction
- training set: 27 ALL and 11 AML

- test set: 20 ALL and 14 ALM

• The SVM classifier achieves perfect 
classification of the test samples

genes



Problems we will cover

• Computational biology
- cancer classification

- functional classification of genes

• Information retrieval
- document classification/ranking

• Recommender systems
- predicting user preferences (e.g., movies)



Functional classification of genes

• We don’t know what most genes do

• Given known roles for some genes, we would 
like to predict the function of all the remaining 
genes

ribosomal
genes






F2N1.3
T18A10.9
F5J6.12
· · ·

unannotated
“genes”






YLA003W
YPL037C
· · ·



Tissue/gene profiles
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Genes

How can only ~20,000 genes specify a complex mammal?

Cell-type specific gene expression
tissues/conditions

tissue profile



Tissue/gene profiles
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Genes

How can only ~20,000 genes specify a complex mammal?

Cell-type specific gene expression
tissues/conditions

tissue profile

gene profile



Machine learning problem

• Dimensionality no longer very high (# of tissue 
samples/conditions)

• Can use other kernels, e.g., radial basis kernel

• New problem: there are much more negatively 
labeled genes than positive
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Genes

How can only ~20,000 genes specify a complex mammal?

Cell-type specific gene expression
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Genes

How can only ~20,000 genes specify a complex mammal?

Cell-type specific gene expression

known -1 gene
known +1 gene
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Imbalanced classes

• In order to ensure that the classifier pays 
attention to the positive class, we increase 
(proportionally) resistance to negative 
examples

freq. of positive examples freq. of negative examples

K ←




K(x1, x1) + λ(n+/n) · · · K(x1, xn)

· · · · · · · · ·
K(xn, x1) · · · K(xn, xn) + λ(n−/n)







Differential resistance
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Functional annotation of genes

• SVMs perform very well (though there are 
other comparable methods)

• Learning methods can identify incorrectly 
annotated genes, predict functional roles for 
uncharacterized genes, as well as guide further 
experimental effort

• Used in many contexts; based on profiles, 
text, and/or sequence
- e.g., understanding developmental roles of genes 

(lineage specific genes)

- etc.



Problems we will cover

• Computational biology
- cancer classification

- functional classification of genes

• Information retrieval
- document classification/ranking

• Recommender systems
- predicting user preferences (e.g., movies)


