Machine Learning I

For the questions below, consider the data points given on the last page of the handout.

1 Conjunction Learning

1. Will our conjunction learning algorithm, if it’s restricted to using only positive literals, be able to learn a hypothesis that has zero error for distinguishing between the red points and the points that are not red? If so, what is the hypothesis? If not, why not?

2. Now consider the green points. What will happen if we run the conjunction learning algorithm, still restricted to just positive literals, to learn a distinction between the green and non-green points? The pseudo-code for the conjunction learning algorithm is below.

 N = negative examples in D
 h = True
 Loop until N is empty
 For every feature j that does not have value 0 on any positive examples
 nj := number of examples in N for which fj = 0
 j* := j for which nj is maximized
 h := h ^ fj*
 N := N - examples in N for which fj* = 0
 If no such feature found, fail

3. If we allow the algorithm to consider negative literals as well, will it find a hypothesis with zero error for the green vs. non-green points?

4. What about the blue vs. non-blue points? Can the conjunction learning algorithm with positive and negative literals find a zero-error hypothesis for these points?
2 Disjunction Learning

1. First, let’s simulate running the disjunction learning algorithm with only positive literals on the blue vs. non-blue points in our data set. The pseudo-code for the algorithm is given below. Remember that we select which feature to add to \(r \) by following the heuristic from lecture. What happens?

\[
\begin{align*}
P & = \text{set of all positive examples} \\
h & = \text{False} \\
\text{Loop until } P \text{ is empty} \\
r & = \text{True} \\
N & = \text{set of all negative examples} \\
\text{Loop until } N \text{ is empty} \\
& \quad \text{If all features are in } r, \text{ fail} \\
& \quad \text{Else, select a feature } f_j \text{ to add to } r \\
& \quad \quad r = r \land f_j \\
& \quad \quad N = N - \text{examples in } N \text{ for which } f_j = 0 \\
& \quad h = h \lor r; \\
& \quad \text{covered } = \text{examples in } P \text{ covered by } r \\
& \quad \text{if covered is empty, fail} \\
& \quad \text{else } P = P - \text{covered}
\end{align*}
\]

2. Now let’s consider allowing negative literals as well. How must we change the algorithm to cope with negative features?
3. Let’s simulate the DNF algorithm \textit{with} negative features on the blue points from our data set.

4. Running the DNF algorithm (with both positive and negative literals) on the red and green points gives the same answers that we found doing conjunction learning from above. That is, the function for determining whether a point is red or not is $f_2 \land f_3$ and the function for determining whether or not a point is green is $\neg f_2 \land \neg f_3$. The following table shows all of the 4-bit inputs that were not in our training set. Figure out which category each point is in.

<table>
<thead>
<tr>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

5. If we learn that the data point 0110 is actually green, this will cause our hypothesis for the red and green classes to shift. The hypothesis for the blue points will not change (depending on how ties are broken). Running the DNF learning algorithm on the new data set will give the function $f_2 \land f_3 \land f_4$ for the red points, and the function $(\neg f_2 \land \neg f_3) \lor (\neg f_1 \land \neg f_4)$ for the green points. How would we now classify the point 0010?
3 Decision Trees

Now let’s consider how to learn the same data set using a decision tree. For this algorithm we will only consider one of the classes; that is, we will look at the green/non-green distinction.

1. Let’s consider which split to make first. In each of the trees below, fill in the proportion of green and non-green points that go in the leaves. Without computing the entropy, can we make some guesses about which split might be the best one?
2. After choosing the first split, the algorithm will make one more split and give us the following tree as its hypothesis. What is the corresponding Boolean hypothesis for the green points?

3. Is the decision tree hypothesis for the green points the same as the hypothesis we got before with the conjunction learning algorithm? Will this always be the case?
4 Naive Bayes

Lastly, let’s consider the Naive Bayes algorithm (using the Laplace correction) on this data set.

1. Would we classify the point 0110 as red or non-red?

2. Would we classify that same point (0110) as green, or non-green?

3. What about blue, or non-blue?
Dataset

The features in each point are binary, but there are three classes into which each of the points is classified.

<table>
<thead>
<tr>
<th>pt</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>blue</td>
</tr>
<tr>
<td>x^2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>blue</td>
</tr>
<tr>
<td>x^3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>blue</td>
</tr>
<tr>
<td>x^4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>blue</td>
</tr>
<tr>
<td>x^5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>red</td>
</tr>
<tr>
<td>x^6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>red</td>
</tr>
<tr>
<td>x^7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>green</td>
</tr>
<tr>
<td>x^8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>green</td>
</tr>
<tr>
<td>x^9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>green</td>
</tr>
</tbody>
</table>