Frames and
Inheritance

In this chapter, you learn about frames, slots, and slot values, and you
learn about tnheritance, a powerful problem-solving method that makes it
possible to know a great deal about the slot values in instances by virtue of
knowing about the slot values in the classes to which the instances belong.

With basic frame-representation ideas in hand, you learn that frames
can capture a great deal of commonsense knowledge, informing you not only
about what assumptions to make, but also about for what information
to look and how to look for that information. You learn that much of
this knowledge is often embedded in when-constructed procedures, when-
requested procedures, when-read procedures, when-written procedures, and
with-respect-to procedures.

By way of illustration, you see how to use frames to capture the general
properties of various kinds of dwarfs, and you see how to use frames to
capture the properties of various kinds of newspaper stories.

Once you have finished this chapter, you will understand that frames
can capture a great deal of commonsense knowledge, including knowledge
about various sorts of objects ranging from individuals to events. You will
also know how the CLOS inheritance procedure determines a precedence
ordering among multiple classes.

FRAMES, INDIVIDUALS, AND INHERITANCE

In this section, you learn about frames and their relation to semantic nets.
In particular, you learn how to capture general knowledge that holds for

179

180

Chapter

9 Frames and Inheritance

most of the individuals in a class. This capability enables you to make use
of the following general knowledge about fairy-tale dwarfs:

Fairy-tale competitors and gourmands are fairy-tale dwarfs.
Most fairy-tale dwarfs are fat.

Most fairy-tale dwarfs’ appetites are small.

Most fairy-tale gourmands’ appetites are huge.

Most fairy-tale competitors are thin.

You also learn the details of one particularly good mechanism for deciding
which general knowledge about classes to transfer to individuals.

Frames Contain Slots and Slot Values

At this point, it is convenient to introduce a few terms that make it easier
to think about semantic nets at a level slightly higher than the lowest level,
where there are just nodes and links.

As shown in figure 9.1, each node and the links that emanate from it
can be collected together and called a frame. Graphically, frames may
be shown in an alternate, rectangle-and-slot notation. Each frame’s name
is the same as the name of the node on which the frame is based. The
names attached to the slots are the names of the links emanating from
that frame’s node. Accordingly, you can talk about a slot, rather than
about a link that emanates from a node. Similarly, you can talk about
slot values rather than about the destinations of links emanating from
a node. Thus, the language of frames, slots, and slot values is sometimes
more concise, and hence clearer, than is the language of nodes and links,
although both describe the same concepts.

Frames may Describe Instances or Classes

Many frames describe individual things, such as Grumpy, an individual
dwarf. These frames are called instance frames or instances. Other
frames describe entire classes, such as the dwarf class. These frames are
called class frames or classes.

As soon as you know the class to which an instance belongs, you gen-
erally assume a lot. Unless you know you are dealing with an exception,
you assume, for example, that dwarfs are fat.

A special slot, the Is-a slot, short for is-a-member-of-the-class, ties
instances to the classes that they are members of. In figure 9.2, for example,
a dwarf named Blimpy is identified as a member of the Managers class.

Another special slot, the Ako slot, short for a-kind-of, ties classes to-
gether. The Managers class is a subclass of the Competitors class, for
example. The Managers class is also a direct subclass of the Competi-
tors class because there is an Ako slot in the Managers class that is filled
with the Competitors class. The Managers class is just a subclass of the
Dwarfs class, however, because you have to traverse more than one Ako
slot to get from the Managers class to the Dwarfs class. Symmetrically,

Frames may Describe Instances or Classes

181

Figure 9.1 A semantic net
can be viewed either as a
collection of nodes and links

or as a collection of frames.

At the top, a semantic net is
viewed as a collection of nodes
and links. In the middle, the
same semantic net is divided
into chunks, each of which
consists of a node and the links
that emanate from it. Next,

at the bottom, each chunk is
shown as a frame with slots
and slot values. As the Grumpy
frame illustrates, slot values
may be shown as frame names

or as links connected to frames.
.|

likes
Happy
[—— 1
_____ N Iy
| |
| |
likes | | 1
1 Happy
| |
_________ |
Managers
Grumpy Happy

Is-a ®
Likes Happy

182 Chapter 9 Frames and Inheritance

Figure 9.2 A simple class
hierarchy. Blimpy is a member

of the Managers class, which —’j
is a direct subclass of the Everything
Competitors class and a N ako
subclass of the Dwarfs class.
Every class is considered to Dwarts
be, ultimately, a subclass of the ako
Everything class. .
e Competitors
ako
Managers
is-a

Blimpy

the Competitors class is said to be a direct superclass of the Managers
class, and the Dwarfs class is said to be a superclass of the Managers
class.

Note that it is convenient to draw class hierarchies with Is-a and Ako
links connecting frames that are actually connected via values in Is-a and
Ako slots. Thus, the vocabulary of nodes and links is often mixed with the
vocabulary of frames and slots.

Frames Have Access Procedures

To make and manipulate instances and classes, you need access procedures,
just as you do for any representation. In figure 9.3, the class constructor
makes a Manager frame that has one direct superclass, the Competitors
class, which appears in the Ako slot. In general, the class constructor
can make class frames that contain other slots and more than one direct
superclass.

An instance constructor makes instance frames. Its input consists of
the name of the class to which the instance belongs; its output is an instance
that belongs to those classes. The new instance is connected automatically
to the class frames via an Is-a slot in the new instance.

A slot writer installs slot values. Its input is a frame, the name of a
slot, and a value to be installed. Finally, a slot reader retrieves slot values.
Its input is a frame and the name of a slot; its output is the corresponding
slot value.

183

Figure 9.3 Instance frames
and class frames are data types
that are made and accessed
with various constructors,

writers, and readers.
- |

Construct a class frame:

Managers

Ako

Write Happy into the Likes slot:

Grumpy

Is-a Manager

Likes Happy

Construct an instance frame: Happy
Grumpy Read the value in the Likes slot:
Is-a Grumpy

lkes [] Is-a
Likes Happy

Happy

Inheritance Enables When-Constructed
Procedures to Move Default Slot Values from
Classes to Instances

The slots in an instance are determined by that instance’s superclasses. If
a superclass has a slot, then the instance inherits that slot.

Sometimes, slot values are specified after an instance is constructed.
After Blimpy is constructed, for example, you can indicate that Blimpy is
smart by inserting the value Smart in Blimpy’s Intelligence slot.

Alternatively, the slot values of an instance may be specified, somehow,
by the classes of which the instance is a member. It might be, for example,
that Dwarfs are fat in the absence of contrary information; also it might be
that Competitors are thin, again in the absence of contrary information.

By writing down, in one place, the knowledge that generally holds for
individuals of that class, you benefit from the following characteristics of
shared, centrally located knowledge:

Shared knowledge, located centrally, is

> Easier to construct when you write it down
> Easier to correct when you make a mistake
> Easier to keep up to date as times change

> Easier to distribute because it can be distributed auto-
matically

One way to accomplish knowledge sharing is to use when-constructed
procedures associated with the classes of which the instance is a member.
Here is an example that supplies a value for the physique slot of individual
dwarfs:

184

Chapter

9 Frames and Inheritance

To fill the Physique slot when a new Dwarf is constructed,
> Write Fat in the slot.

The expectations established by when-constructed procedures are called
defaults.

In the simplest class hierarchies, no more than one when-constructed
procedure supplies a default for any particular slot. Often, however, several
when-constructed procedures, each specialized to a different class, sup-
ply default values for the same slot. Here, for example, a second when-
constructed procedure provides a default value for the Physique slot of
individual Competitors:

To fill the Physique slot when a new Competitor is con-
structed,

> Write Thin in the slot.

Whenever an individual is both a Competitor and Dwarf, both procedures
compete to supply the default value. Of course, you could specify an inher-
itance procedure that allows multiple procedures to supply defaults, but
the usual practice is to allow just one procedure.

How can you decide which when-constructed procedure is the winner?
First, you learn about the special case in which no individual has more
than one Is-a link and no class has more than one Ako link. Once this
foundation is in place, you learn about more complicated hierarchies in
which individuals and class have multiple inheritance links.

One way to decide which when-constructed procedure to use, albeit a
way limited to single-link class hierarchies, is to think of classes themselves
as places where procedures can be attached. One of the sample procedures,
because it deals with new Dwarfs, is attached to the Dwarf class; the other
is attached to the Competitors class. That way, you can find both by a
search up from the new instance through Is-a links and Ako links.

Because each class in the class hierarchy in the example has only one
exiting Ako link, it is easy to form an ordered list consisting of Blimpy
and the classes to which Blimpy belongs. This ordered list is called the
class-precedence list:

Blimpy

Managers class

Competitors class procedure stored here
Dwarfs class — procedure stored here
Everything class

A procedure that is specialized to one of the classes on the class-precedence
list is said to be applicable.

A Class Should Appear Before All Its Superclasses 185

Suppose, for example, that you have just constructed Blimpy. You have
Blimpy’s class-precedence list, which supplies two procedures for computing
values for the Physique slot. The procedure attached to the Competitor’s
class says that Blimpy is Thin and the procedure attached to the Dwarf
class says that Blimpy is Fat. This kind of ambiguity is always resolved
in favor of the most specific applicable procedure—the one that is encoun-
tered first on the class-precedence list. In the example, as shown by the
class-precedence list, the first of the procedure-supplying classes encoun-
tered is the Competitors class, so the procedure attached there is the one
that determines Blimpy’s physique when Blimpy is constructed. Evidently,
Blimpy is Thin.

A Class Should Appear Before All Its Superclasses

When there is more than one Is-a link above an instance or more than one
Ako link above a class, then the class hierarchy is said to branch.t Because
branching class hierarchies are more difficult to handle, yet are ubiquitous
in intelligent systems, the rest of this section is devoted to explaining the
issues involved, and to presenting a procedure that deals with those issues.

As an illustration, consider the class hierarchy shown in figure 9.4.
Suppose that there are two procedures for computing Appetite:

To fill the Appetite slot when a new Dwarf is constructed,
> Write Small in the slot.

To fill the Appetite slot when a new Gourmand is con-
structed,

> Write Huge in the slot.

Because the class hierarchy branches, you must decide how to flatten the
class hierarchy into an ordered class-precedence list.

One choice is to use depth-first search. Depth-first search makes sense
because the standard convention is to assume that information from specific
classes should override information from more general classes. Left-to-right
search makes sense too, but only because you need some way to specify the
priority of each direct superclass, and the standard convention is to specify

1 Generally, the treatment of frames in this chapter follows the conventions of the
Common Lisp Object System, also known as CLOS. However, in contrast to
the conventions of CLOS, multiple Is-a connections are allowed—CLOS forbids
them for the sake of efficient implementation. There is no loss of generality in
CLOS, however, because an instance can be attached to a class that is wholly
dedicated to that instance and that has multiple Ako connections to the desired
superclasses.

186 Chapter 9 Frames and Inheritance

Figure 9.4 Another class
hierarchy. Because Blimpy
belongs to both the Gourmands Everything
class and to the Diarists class,
as well as the Managers class,
the class hierarchy branches

upward. Because the Dwarfs Dwarfs
class has three subclasses—
Competitors, Gourmands and
Diarists—the class hierarchy ako ako ako
branches downward as well.

ako

Competitors

ako

Diarists

Managers Gourmands

is-a is-a

Blimpy

priority through the left-to-right superclass order provided to the class-
constructor procedure.

Note, however, that you must modify depth-first search slightly, be-
cause you want to include all nodes exactly once on the class-precedence
list. To perform exhaustive depth-first search, you explore all paths,
depth first, until each path reaches either a leaf node or a previously-
encountered node.

To search the class hierarchy shown in figure 9.4, using exhaustive
depth-first search, you first follow the left branch at each node encoun-
tered; the resulting path includes Blimpy, Managers, Competitors, Dwarfs,
and Everything. Then, you follow Blimpy’s middle branch to Gourmands;
the resulting path terminates at Gourmands, however, because you have
already encountered the Dwarfs node. Finally, you follow Blimpy’s right
branch to Diarists, where you terminate the path.

Thus, exhaustive depth-first, left-to-right search produces the following
class-precedence list for Blimpy:

A Class’s Direct Superclasses Should Appear in Order 187

Blimpy

Managers class

Competitors class

Dwarfs class « procedure stored here
Everything class

Gourmands class «— procedure stored here
Diarists class

You can see that the first Appetite-computing when-constructed procedure
encountered for Blimpy is the one attached to the Dwarfs class—the one
that would indicate that Blimpy’s appetite is small. This conclusion seems
at odds with intuition, however, because the Gourmands class is a subclass
of the Dwarfs class. Surely a class should supply more specific procedures
than any of its superclasses. Rephrasing, you have a rule:

m Each class should appear on class-precedence lists before any of its
superclasses.

To keep a class’s superclasses from appearing before that class, you can
modify depth-first, left-to-right search by adding the up-to-join proviso.
The up-to-join proviso stipulates that any class that is encountered more
than once during the depth-first, left-to-right search is ignored until that
class is encountered for the last time.

Using this approach, the construction of Blimpy’s class-precedence list
proceeds as before until the Competitors class is added and the Dwarfs
class is encountered. Because there are three paths from Blimpy to the
Dwarfs class, the Dwarfs class is ignored the first and second times it is
encountered. Consequently, the Gourmands class is the next one added to
the class-precedence list, followed by the Diarists class. Then, the Dwarfs
class is encountered for the third and final time, whereupon it is noted
for the first time, enabling it and the Everything class to be added to the
class-precedence list. Thus, the Gourmands class appears before the Dwarf
class, as desired:

Blimpy

Managers class

Competitors class

Gourmands class « procedure stored here
Diarists class

Dwarfs class « procedure stored here
Everything class

Now the first appetite-computing procedure encountered is the one that
says Blimpy’s appetite is huge.
A Class’s Direct Superclasses Should Appear in Order

The depth-first, left-to-right, up-to-join procedure for computing class-
precedence lists still leaves something to be desired. Consider, for example,

188 Chapter 9 Frames and Inheritance

Everything
ako
Dwarfs
ako
ako K
Eccentrics ako ako ako
rTeachers Athletes Endomorphs
ako | ako Programmers
ako /1 ako | ako ako
‘ Professors ‘ Hackers Weightlifters Shotputters
is-a is-a is-a is-a
Crazy Jacque
Figure 9.5 Another the situation involving two other dwarfs, Crazy and Jacque, shown in fig-
class hierarchy, with ure 9.5.
Is-a and Ako links The depth-first, left-to-right, up-to-join approach produces the follow-
shown. The depth- ing class-precedence lists for Crazy and Jacque:
first, left-to-right, Crazy Jacque
up-to-join approa(?h Professors class Weightlifters class
produces appropngte Eccentrics class Athletes class
class-precedence lists Teachers class Shotputters class
for both Crazy and Hackers class Endomorphs class
Jacque. Programmers class Dwarfs class
Dwarfs class Everything class

Everything class

Nothing is amiss. No class appears after any of its own superclasses. More-
over, each class’s direct superclasses appear in their given left-to-right or-
der: The Professors class appears before the Hackers class; the Eccentrics
class appears before the Teachers class; the Weightlifters class appears

A Class’s Direct Superclasses Should Appear in Order 189

Everything
ako
Dwarfs
ako
ako k
Eccentrics ako &%
ako
Teachers Athletes Endomorphs
Programmers ako
ako ako / is-a ako ako
akO ako
Professors Hackers Weightlifters Shotputters
is-a is-a
is-a \ is-a /)
Crazy Jacque

Figure 9.6 Still
another class
hierarchy, with one
new Is-a link and two
new Ako links shown
by thick lines. This
time, the depth-first,
left-to-right, up-to-join
approach does not
produce appropriate
class-precedence lists
for either Crazy or

Jacque.
|

before the Shotputters class; and the Athletes class appears before the
Endomorphs class.

But suppose one Is-a link and two Ako links are added, as in figure 9.6.
Now the class-precedence lists for Crazy and Jacque are different:

Jacque
Weightlifters class
Shotputters class
Endomorphs class
Athletes class
Dwarfs class
Everything class

Crazy

Professors class
Teachers class
Hackers class
Eccentrics class
Programmers class
Dwarfs class
Everything class

Again, no class appears after any of its own superclasses, but the Eccentrics
and Teachers classes—direct superclasses of the Professors class—are now
out of the left-to-right order prescribed by the Ako links exiting from the
Professors class. Similarly, the Athletes and Endomorphs classes—direct

190

Chapter

9 Frames and Inheritance

superclasses of the Weightlifters class—are now out of the left-to-right or-
der prescribed by the Ako links exiting from the Weightlifters class. In
both instances, the order changes are caused by the addition of Ako links
connected to other classes. These order changes are bad because left-to-
right order, by convention, is supposed to indicate priority. You need a still
better way to compute class-precedence lists that conforms to the following
rule:

m Each direct superclass of a given class should appear on class-precedence
lists before any other direct superclass that is to its right.

The Topological-Sorting Procedure Keeps
Classes in Proper Order

The topological-sorting procedure, to be described in this section, is
definitely more complicated than the depth-first, left-to-right, up-to-join
procedure. The extra complexity is worthwhile, however, because the
topological-sorting procedure keeps direct superclasses in order on class-
precedence lists. Thus, you know the order of a class’s direct superclasses
on the class’s class-precedence list as soon as you know how the direct su-
perclasses are ordered: You do not need to know the entire structure of the
class hierarchy.

Before you learn the details of the topological sorting procedure, how-
ever, you will find it helpful to see what happens when a path through
a class hierarchy is expressed as a list of adjacent pairs. For example,
the simple, nonbranching class hierarchy in figure 9.2 can be represented
as three pairs of adjacent classes, Managers—Competitors, Competitors—
Dwarfs, and Dwarfs—Everything.

Note that the order in which the pairs appear can be scrambled without
hindering your ability to reconstruct the original path. First, you look for
a class that occupies the left side of a pair but that does not occupy the
right side of any other pair. There will always be such a class; once you
find it, you need only to add it to the end of a list, to strike out the pair
in which it appears, and to repeat.

Next consider the classes to which Blimpy belongs, as shown in fig-
ure 9.4. Blimpy is not just a Manager; he is also a Gourmand and a
Diarist, in that left-to-right order. Now you can express that left-to-right
order as a list of adjacent pairs, just as you previously expressed a path
up a class hierarchy as a set of left-to-right pairs. This time, you get
Managers-Gourmands and Gourmands-Diarists.

As before, you can scramble the order of the pairs without hindering
your ability to reconstruct the original left-to-right order. Again, all you
need to do is to look for a class that occupies the left side of a pair but
that does not occupy the right side of a pair. Once you find it, you add it
to the end of a list, strike out the pair in which it appears, and repeat.

The Topological-Sorting Procedure Keeps Classes in Proper Order 191

Thus, you can reconstruct either a nonbranching path up a class hi-
erarchy or the left-to-right order across a set of direct superclasses from
appropriately constructed lists of pairs. In one instance, you ensure that
no class is listed before any of its superclasses; in the other instance, you
ensure that the left-to-right order of direct superclasses is preserved.

Now you already understand the key idea behind the topological-sorting
procedure; all that remains is to learn about a clever way of constructing
a list of pairs such that both the upward and rightward constraints are
expressed.

The first step in forming a class-precedence list for an instance using
topological sorting is to form an exhaustive list consisting of the instance
itself and all classes that can be reached via Is-a and Ako links from that
instance. For Crazy, for example, this list contains Crazy, Professors, Ec-
centrics, Dwarfs, Everything, Teachers, Hackers, and Programmers. Note
that this list constitutes raw material for building the class precedence list;
it is not the class-precedence list itself.

The next step is to form a list of pairs for the one instance and the
many classes on the raw-materials list. To make discussion easier, let us
refer to both the instance and the classes on the raw-materials list as items.

To form a list of pairs for an item on the raw-materials list, think of
passing a fish hook through the item and that item’s direct superclasses, as
shown in figure 9.7. Next, walk along the fish hook from barb to eyelet while
making a list of pairs of adjacent items encountered on the hook. Following
the fish hook for Crazy produces Crazy—Professors and Professors—Hackers.
Following the fish hook for Professors produce Professors—Eccentrics and
Eccentrics—Teachers; following the fish hook for Hackers produce Hackers—
Eccentrics and Eccentrics-Programmers.

Following fish hooks for all the items on the raw materials list for Crazy
yields the following pairs:

Node Fish-hook pairs

Crazy Crazy—Professors, Professors—Hackers
Professors Professors—Eccentrics, Eccentrics—Teachers
Eccentrics Eccentrics—Dwarfs

Dwarfs Dwarfs—Everything

Teachers Teachers—Dwarfs

Hackers Hackers—Eccentrics, Eccentrics—Programmers
Programmers Programmers-Dwarfs

Everything Everything

The next step is to look for an item that occupies the left side of one or
more pairs, but does not occupy the right side of any pair. To make it easier
to refer to such an item, let us say that it is exposed. In our example,
Crazy is exposed by virtue of the pair Crazy—Professors and the absence

192 Chapter 9 Frames and Inheritance

of any pair with Crazy on the right side.
Whenever you find an exposed item, you add it to the end of the class-
precedence list and strike out all pairs in which it occurs. For the example,

this means starting the class-precedence list with Crazy and striking out
Crazy-Professors:

Node Fish-hook pairs

Crazy Cragy—Professors, Professors-Hackers
Professors Professors—Eccentrics, Eccentrics-Teachers
Eccentrics Eccentrics-Dwarfs

Dwarfs Dwarfs—Everything

Teachers Teachers—Dwarfs

Hackers Hackers—Eccentrics, Eccentrics-Programmers
Programmers Programmers—Dwarfs

Everything Everything

Class-precedence list: Crazy

Now, with the pair Crazy-Professors struck out, the Professors class is
exposed, leading to the next addition to the class-precedence list and to
the accompanying strike-out action:

Node Fish-hook pairs

Crazy Crasy—Professors, Professors—Hackers
Professors Professors—Eceentries, Eccentrics—Teachers
Eccentrics Eccentrics-Dwarfs

Dwarfs Dwarfs-Everything

Teachers Teachers—Dwarfs

Hackers Hackers—Eccentrics, Eccentrics—Programmers
Programmers Programmers-Dwarfs

Everything Everything

Class-precedence list: Crazy, Professors

Now the Hackers class is exposed, so you add Hackers and strike Hackers—
Eccentrics:

The Topological-Sorting Procedure Keeps Classes in Proper Order 193

Everything ®

“—bwarls—»
Dwarfs PY Dwarfs PY Dwartfs PY Dwarfs PY Dwarfs ®
A
Eccentrics > Teachers > rogrammers > Athletes EndomorphsL
Eccentrics Teachers PY Athletes Endomorphs ®
Professors > Weightlifters >
Eccentrics Programmers ® Athletes Endomorphs ®
Hackers > Shotputters >
Professors Hackers Weightlifters Shotputters Athletes ®

@ \
Crazy > (Jacque >

Figure 9.7 Fish hooks for Crazy, Jacque, and the classes reachable from them. These fish hooks yield lists of
class pairs that enable the computation of a class-precedence list via the topological-sorting procedure.

194 Chapter 9 Frames and Inheritance

Node Fish-hook pairs

Crazy Crazy—Professors, Professors—Hackers
Professors Professors—Eecentries, Eccentrics-Teachers
Eccentrics Eccentrics-Dwarfs

Dwarfs Dwarfs—Everything

Teachers Teachers-Dwarfs

Hackers Hackers—Eeeentries, Eccentrics—Programmers
Programmers Programmers—Dwarfs

Everything Everything

Class-precedence list: Crazy, Professors, Hackers

Now the Eccentrics class is exposed, so you add Eccentrics and strike
Eccentrics—Teachers, Eccentrics—Dwarfs, and Eccentrics-Programmers:

Node Fish-hook pairs
Crazy Crazy—Professers, Professors—Haekers
Professors Professors—Eecentries, Eecentries—Teachers
Eccentrics Eeeentries—Dwazfs
Dwarfs Dwarfs—Everything
Teachers Teachers—Dwarfs
Hackers Hackers—Eecentrics, Eceentrics—Programmers
Programmers Programmers-Dwarfs
Everything Everything
Class-precedence list Crazy
Professors
Hackers
Eccentrics

At this point, there are two exposed classes, Teachers and Programmers.
Accordingly, you need a way to break ties. One possible tie breaker—
one that tends to prevent erratic movement through the tree—is to select
the class that is a direct superclass of the lowest-precedence class on the
emerging class-precedence list.

In the example, however, neither the Teachers class nor the Program-
mers class is a direct superclass of the lowest-precedence class on the class-
precedence list, the Eccentrics class.

Generalizing a bit, you move from lowest precedence to highest prece-
dence on the emerging class-precedence list, encountering the Hackers class.
Because the Programmers class is a direct superclass of the Hackers class,
but the Teachers class is not, the tie is broken and you can proceed:

The Topological-Sorting Procedure Keeps Classes in Proper Order 195

Node Fish-hook pairs
Crazy Cragy-Professors, Professors—Hackers
Professors Professors—Eecentrics, Eccentrics—Teachers
Eccentrics Eecentrics—Dwarfs
Dwarfs Dwarfs—Everything
Teachers Teachers—Dwarfs
Hackers Hackers~Eccentries, Eccentrics—Programmers
Programmers Programmers-Dwarfs
Everything Everything
Class-precedence list Crazy
Professors
Hackers
Eccentrics
Programmers

From here on, progress is uneventful, with the following result:

Node Fish-hook pairs
Crazy Crazy—Professors, Professors—Haekers
Professors Professors—Eecentrics, Eccentrics—Teachers
Eccentrics Eeccentries—Dwarfs
Dwarfs Dwarfe-Everything
Teachers Teachers—Dwarfs
Hackers Haeckers—Eccentrics, Eccentrics—Programmers
Programmers Programmers—Dwarfs
Everything Everything
Class-precedence list Crazy
Professors
Hackers +— procedure to be stored here
Eccentrics — procedure to be stored here
Programmers
Teachers
Dwarfs
Everything

Now, suppose you create two personality-determining when-constructed
procedures, one for Hackers and one for Eccentrics. The when-constructed
procedure that is specialized to the Hacker class indicates that hackers are

shy:

196

Chapter

9 Frames and Inheritance

To fill the Personality slot when a new Hacker is con-
structed,

> Write Shy in the slot.

On the other hand, the when-constructed procedure that is specialized to
the Eccentrics class indicates that eccentrics are weird:

To fill the Personality slot when a new Eccentric is con-
structed,

> Write Weird in the slot.

Now suppose that the Crazy instance is constructed after these when-
constructed procedures are defined. Is Crazy Shy or Weird? Evidently,
Crazy is Shy, because Hackers appears before Eccentrics on Crazy’s class-
precedence list.

In summary, when new individuals are created, when-constructed pro-
cedures supply default slot values. The class-precedence list determines
which when-constructed procedures are appropriate:

To fill the slots in a new instance,

> Compute the class-precedence list for the new instance
using the topological-sorting procedure.

> For each slot,
> Collect all when-constructed procedures for that slot.

> Move along the class-precedence list, from the most
specific end. Stop when you encounter a class that is
referred to by one of the slot-specific when-constructed
procedures. Call this when-constructed procedure
the most specific when-constructed procedure for the
slot.

> Use that most specific when-constructed procedure.

To compute the class-precedence list, you can use the topological sorting
procedure, which honors the subclass-superclass principle and the left-to-
right principle:

When-Requested Procedures Override Slot Values 197

To compute an instance’s class-precedence list,
> Create fish-hook pairs
> Until all the fish-hook pairs are eliminated
> Find the exposed classes.

> Select the exposed class that is a direct superclass
of the lowest-precedence class on the emerging class-
precedence list.

> Add the selected class to the emerging class-precedence
list.

> Strike all fish-hook pairs that contain the newly added
class.

DEMON PROCEDURES

So far, you have seen that slot values can be established by inheritance
when instances are constructed, or by the direct use of a writer for slots. In
this section, you see that reading or writing can activate when-requested
procedures, when-read procedures, or when-written procedures.
Sometimes these procedures are called demons because they lurk about
doing nothing unless they see the request, read, or write operations they
were designed to look for. In contrast to ordinary demons, these when-
requested, when-read, and when-written demons are entirely friendly.

When-Requested Procedures Override Slot Values

After an instance has been constructed, you can replace slot values installed
at creation time. If you like, you can go one step further, overriding any
existing slot values altogether, using when-requested procedures. One such

when-requested procedure indicates that athletes generally exercise as a
hobby:

When a value for the Hobby slot of an Athlete is requested,

> Return Exercise.

Thus, Exercise becomes a sort of virtual slot value. No slot actually has
Exercise in it, but it seems as though the Hobby slots of all Athletes have
Exercise in them nevertheless.

When-requested procedures do not need be as simple as the when-
requested, hobby-determining procedure for Athletes. They can, for exam-
ple, take advantage of slot values already established by when-constructed
procedures:

198

Chapter

9 Frames and Inheritance

When a value for the Hobby slot of a Dwarf is requested,

> If the dwarf’s Personality slot is filled with Shy, return
Reading.

> Otherwise, return Dancing.

Now that there are two hobby-determining procedures, you need a way to
choose between them. Naturally, it makes sense to use the same precedence-
determining topological-sorting procedure that you have seen already in the
context of choosing among when-constructed procedures.

For Crazy’s Hobby slot, the governing procedure is the when-requested,
hobby-determining procedure for Dwarfs that examines the dwarf’s Person-
ality slot. Inasmuch as Crazy’s Personality slot was filled with Shy when the
Crazy instance was constructed, Crazy’s hobby must be reading. On the
other hand, for Jacque's Hobby slot, the governing procedure is the when-
requested procedure for Athletes that straightaway indicates the Athlete’s
Hobby is Exercise.

When-Read and When-Written Procedures Can
Maintain Constraints

When-read and when-written procedures are activated when slot values
are, respectively, read and written. The following when-written procedure
is activated whenever a value is written into the Physique slot of an Athlete
after the Athlete is constructed:

When a value is written in the Physique slot of an Athlete,

> If the new value is Muscular, write Large in the Athlete’s
Appetite slot.

Evidently, this when-written procedure captures a constraint relating an
Athlete’s Physique to the Athlete’s Appetite: If the new slot value is Mus-
cular, then Large is written into the Appetite slot. Thus, Muscular Athletes
have Large Appetites, in contrast to Gourmands, who have Huge Appetites,
and ordinary Dwarfs, who have Small Appetites.

As the example illustrates, when-read and when-written procedures
can be used to ensure that a change in one slot’s value is reflected in an
appropriate, automatic change to another slot’s value. In this role, they
perform as constraint-enforcing bookkeepers.

In contrast to when-constructed and when-requested procedures, all
applicable when-read and when-written procedures always are activated—
rather than only the one with the highest precedence as determined by
the topological sorting procedure. Given that all applicable when-read
and when-written procedures are activated, however, there is a question

With-Respect-to Procedures Deal with Perspectives and Contexts 199

of order. Sophisticated frame systems provide you with a variety of op-
tions.

With-Respect-to Procedures Deal with
Perspectives and Contexts

Sometimes, the proper way to think about an instance is determined by
a particular perspective. A particular dwarf, Blimpy, may be considered
big for a dwarf, but small when viewed from the perspective of, say, Snow
White. At other times, the proper way to think about an instance is
conditioned by the context in which instance lies. A particular person, for
example, may be happy when hiking in the mountains, yet grumpy when
traveling on an airplane.

To deal with these dependencies, you use with-respect-to proce-
dures, which are when-requested procedures that are specialized to more
than one class. The following, for example, are two with-respect-to size-
determining procedures, each of which is specialized to two classes, the
first being the class to which an instance belongs, and the second being the
reference class:

When a value for the Size slot of Blimpy, from the perspec-
tive of a typical dwarf, is requested,

> Return Big.

When a value for the Size slot of Blimpy, from the perspec-
tive of a typical person, is requested,

> Return Small.

Similarly, you can define with-respect-to procedures that involve context:

When a value for the Mood slot of Patrick, in the context
of Mountain Hiking, is requested,

> Return Happy.

When a value for the Mood slot of Patrick, in the context
of Airplane Travel, is requested,

> Return Grumpy.

200

Chapter

9 Frames and Inheritance

Inheritance and Demons introduce Procedural Semantics

When no demons are used, frame systems can be viewed as semantic nets.
When demons are used, however, a great deal of procedural knowledge can
be incorporated into a particular frame system. Accordingly, the mecha-
nisms that enable the incorporation of procedural knowledge are prominent
in the specification for frame systems:

A frame system is a representation
That is a semantic net
In which

> The language of nodes and links is replaced by the language
of frames and slots.

> Ako slots define a hierarchy of class frames.

> Is-a slots determine to which classes an instance frame be-
longs.

> Various when-constructed, when-requested, when-read, when-
written, and with-respect-to procedures supply default val-
ues, override slot values, and maintain constraints.

> A precedence procedure selects appropriate when-constructed,
when-requested, when-read, when-written, and with-respect-
to procedures by reference to the class hierarchy.

With constructors that

> Construct a class frame, given a list of superclasses, and a
list of slots

> Construct an instance frame, given a list of direct super-
classes

> Construct a when-requested, when-read, when-written, or
with-respect-to procedure

With writers that
> Establish a slot’s value, given an instance, a slot, and a value
With readers that

> Produce a slot’s value, given an instance and a slot

Recall that you have an example of procedural semantics when meaning
is defined by a set of procedures that operate on descriptions in a represen-
tation. Those procedures often lie outside the representation. In a frame
system, however, powerful procedures are brought into the representation
itself, becoming part of it.

One kind of incorporated procedural knowledge lies in the procedures
for computing class precedence and using class-precedence to determine

Object-Oriented Programming Focuses on Shared Knowledge 201

default slot values, thus contributing to the meaning of the Is-a and Ako
slots. Another kind of incorporated procedural knowledge lies in demon
procedures, many of which are permanent parts of whole classes of frame
systems.

The idea of incorporating procedural knowledge into a representa-
tion is extremely powerful. In subsequent chapters, you see that you can
build powerful problem solvers merely by adding some class definitions and
constraint-enforcing demons to an off-the-shelf, generic frame system. Lit-
tle is left to be done from scratch, other than the description of particular
problems or situations.

Object-Oriented Programming Focuses on Shared Knowledge

You can benefit from the virtues of knowledge sharing, not only when
creating, writing, and reading slot values, but also when performing actions
in general.

Consider, for example, the problem you face when you have to decide
how to eat various foods at a fancy dinner. You can capture the advice
offered by a typical etiquette book in when-applied procedures such as the
following:

To eat when Soup is to be eaten,
> Use a big spoon.

To eat when Salad is to be eaten,

> Use a small fork.

To eat when the Entree is to be eaten,
> Use a big fork and a big knife.

Thus, a when-applied procedure is a procedure that helps you to per-
form an action in a manner suited to the object acted on.

Note that when-applied procedures, like other demon procedures, are
shared among subclasses automatically. Accordingly, you do not need to
write and maintain separate procedures for every possible subclass of the
soup, salad, and entree classes. If, however, some soup, salad, or entree
subclass calls for an unusual or special tool, you can construct another
when-applied procedure easily, specialize it to the appropriate subclass,
an thereby ensure that your new, specific procedure will displace the old,
general one:

202

Chapter

9 Frames and Inheritance

To eat when the Entree is a Lobster,

> Use a tiny fork and a nutcracker.

Essentially, an object-oriented programming language enables knowl-
edge sharing by providing mechanisms for defining object classes, creating
individuals, and writing when-applied procedures. The virtues of knowl-
edge sharing have made object-oriented programming languages increas-
ingly popular.

FRAMES, EVENTS, AND INHERITANCE

In the previous section, you learned how you can capture general knowl-
edge about individuals by using frames. In this section, you learn how
frames can capture general knowledge about events of the sort described
in newspapers.

Digesting News Seems to Involve Frame
Retrieving and Slot Filling

Any news report of an earthquake probably will supply the place; the time;
the number of people killed, injured, and homeless; the amount of property
damage; the magnitude on the Richter scale; and possibly the name of the
geological fault that has slipped. To represent this kind of knowledge in
frames, you need the Earthquake, Disaster, and Event frames shown in
figure 9.8.

Now suppose you have a news story freshly arrived from a wire service.
You want to use that story to fill in the slots in an appropriate instance
frame. Curiously, for many news stories—earthquake stories in particular—
primitive when-constructed procedures can fill in the slots by looking in the
story for various sorts of numbers:

To fill the Time slot when a new Event is constructed,
> Find a number with a colon in it and write it in the slot.

To fill the Fatalities slot when a new Disaster is constructed,

> Find an integer near a word with a root such as kill or
die, and write it in the slot.

To fill the Damage slot when a new Disaster is constructed,

> Find a number next to a dollar sign, and write it in the
slot.

Digesting News Seems to Involve Frame Retrieving and Slot Filling

203

Figure 9.8 A net connecting
frames for news stories. By A
inheritance on two levels, it is
clear that earthquake stories Event
typically have seven slots to be Ako (e
filled. All may have slot-filling Time]
procedures attached. Day [
c- Place 1
Disaster Celebration
Ako (e] Ako o]
Damage [Host 1
Fatalites] Guests []
Earthquake Wedding
Ako e 1 Ako e]
Fault 1 Bride]
Magnitude[] Groom [__]
Flood Birthday-party
Ako e] Ako e 1
River 1 Celebrant]
Crest] Age —]

To fill the Magnitude slot when a new Earthquake is con-
structed,

> Find a decimal number between 1.0 and 10.0, and write
it in the slot.

Other simple procedures can fill in nonnumeric slots:

To fill the Day slot when a new Event is constructed,

> Find a word such as today, yesterday, tomorrow, or the
name of one of the days of the week, and write it in the
slot.

204 Chapter 9 Frames and Inheritance

Figure 9.9 A frame produced

by two news stories. One news

story, correctly analyzed, is Earthquake

about a genuine earthquake. :

The other news story, muffed, is Time

about earthquake research. Day Today

= Place Lower-Slabovia
Damage 500,000,000
Fatalities 25
Fault Sadie-Hawkins
Magnitude | 8.5

To fill the Place slot when a new Event is constructed,

> Find a name that appears in a dictionary of geographical
places and write that name in the slot.

To fill the Fault slot when a new Earthquake is constructed,

> Find a proper name near the word fault and write it in
the slot.

Consequently, analyzing stories such as the following can be easy, given
that the title evokes the Earthquake frame:

Earthquake Hits Lower Slabovia
Today, an extremely serious earthquake of magnitude 8.5 hit Lower
Slabovia, killing 25 people and causing $500 million in damage.
The President of Lower Slabovia said that the hard-hit area near
the Sadie Hawkins fault has been a danger zone for years.

In Chapter 7, you learned that, whenever a pattern is filled in with appro-
priate variable values, it is said to be instantiated. Figure 9.9 shows the
instantiated frame constructed for the earthquake story. Once the frame is
instantiated, the frame’s slot values can be used to instantiate a summary
pattern such as the following:

Digesting News Seems to Involve Frame Retrieving and Slot Filling 205

Earthquake Summary Pattern
An earthquake occurred in <wvalue in Location slot> <value in Day
slot>. There were <value in Fatalities slot> fatalities and $<value
in Damage slot> in property damage. The magnitude was <value
in Magnitude slot> on the Richter scale; the fault involved was the
<walue in Fault slot>.

Thus, you get the following summary by instantiating the earthquake sum-
mary pattern using data transferred in from an instantiated Earthquake
frame:

Instantiated Earthquake Summary Pattern

An earthquake occurred in Lower Slabovia today. There were 25
fatalities and $500 million in property damage. The magnitude was
8.5 on the Richter scale; the fault involved was the Sadie Hawkins.

Evidently, the Earthquake frame stands between the story and its summary,
helping to bridge the gap, so to speak.

Note, however, that slot filling using simple, special-purpose procedures
can lead to silly results, given that the special-purpose procedures really
do not understand stories. Consider this example:

Earthquake Study Stopped
Today, the President of Lower Slabovia killed 25 proposals total-
ing $500 million for research in earthquake prediction. Our Lower
Slabovian correspondent calculates that 8.5 research proposals are
rejected for every one approved. There are rumors that the Presi-
dent’s science advisor, Sadie Hawkins, is at fault.

Shudder to think: This story could be summarized, naively, as though
it were the story about an actual earthquake, producing the same frame
shown before in figure 9.9 and the same instantiated earthquake summary
pattern.

Of course, creating procedures for general news is much harder than
creating procedures for specialized news. Interestingly, good news writers
seem to use certain conventions that help:

8 The title of a news story and perhaps the first sentence or two evoke a
central frame.

® Subsequent material fills slots in the central frame. The slot-filling
process evokes other frames introducing more open slots.

B Cause-effect relations are given explicitly. Readers do not need to
deduce causes, because words such as because appear frequently.

® Few pronouns, if any, are used. In political news, for example, the
nation’s legislature may be referred to as “Congress,” or “Capitol Hill,”
or “Washington’s lawmakers,” according to fancy.

206 Chapter 9 Frames and Inheritance

® Few new frames, if any, need to be constructed. Creating new frames
requires reflection, and reflection is discouraged.

Event-Describing Frames Make Stereotyped
Information Explicit

You have seen that the information in event frames and when-constructed
procedures make certain expectations and procedures explicit:

B The slots in event frames make explicit what you should expect to
know about them.

® The when-constructed procedures associated with event frames make
explicit how you can try to acquire what you expect to know.

By making explicit appropriate knowledge—what you expect to know and
how to acquire what you expect to know—event frames and their associated
procedures satisfy an important criterion for good representation.

SUMMARY

B A frame system can be viewed as a generalized semantic net. When
you speak about frames, however, your language stresses instances or
classes, rather than nodes, and stresses slots and slot values, rather
than links and link destinations.

® Inheritance moves default slot values from classes to instances through
the activation of the appropriate when-constructed procedure.

® To determine which when-constructed procedure dominates all other
applicable when-constructed procedures, you have to convert a class
hierarchy into a class-precedence list. Generally, the conversion should
be such that each class appears before all that class’s superclasses and
each class’s direct superclasses appear in order.

B When-requested procedures override slot values. When-read and when-
written procedures maintain constraints. With-respect-to procedures
deal with perspectives and contexts.

B Digesting news seems to involve inheritance. Your understanding of an
earthquake news story, for example, benefits from your knowledge of
the connection between earthquakes and disasters and your knowledge
of the connection between disasters and events in general.

B Shared knowledge, located centrally, is easier to construct when you
write it down, easier to correct when you make a mistake, easier to
keep up to date as times change, and easier to distribute because it
can be distributed automatically.

Background 207

BACKGROUND

Marvin Minsky is largely responsible for defining and popularizing many of
the notions connected with frames [1975]. Other important contributions
have been made via the many frame-oriented representation languages pat-
terned after Minsky’s ideas.

For a discussion of inheritance as embodied in a programming language,
see the monumental reference work Common Lisp, The Language, by Guy
L. Steele, Jr. [1990)

The discussion of news is based on the work of Gerald F. DeJong II
[1979].

