Rules and
Rule Chaining

In this chapter, you learn about the use of easily-stated if-then rules
to solve problems. In particular, you learn about forward chaining from
assertions and backward chaining from hypotheses.

By way of illustration, you learn about two toy systems; one identifies
zoo animals, the other bags groceries. These examples are analogous to
influential, classic systems that diagnose diseases and configure computers.

You also learn about how to implement rule-based systems. You learn,
for example, how search methods can be deployed to determine which of
many possible rules are applicable during backward chaining, and you learn
how the rete procedure does efficient forward chaining.

When you have finished this chapter, you will understand the key
ideas that support many of the useful applications of artificial intelligence.
Such applications are often mislabeled expert systems, even though their
problem-solving behavior seems more like that of human novices, rather
than of human experts.

RULE-BASED DEDUCTION SYSTEMS

Rule-based problem-solving systems are built using rules like the following,
each of which contains several if patterns and one or more then patterns:
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Figure 7.1 A conve-

nient graphical notation for
antecedent—consequent rules.
The symbol, appropriately, is
the same as the one used

in digital electronics for AND

gates.
.|

Antecedents
Consequents

Rn If ify
if2

then them
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In this section, you learn how rule-based systems work.

Many Rule-Based Systems Are Deduction Systems

A statement that something is true, such as “Stretch has long legs,” or
“Stretch is a giraffe,” is an assertion.' In all rule-based systems, each
if pattern is a pattern that may match one or more of the assertions in
a collection of assertions. The collection of assertions is sometimes called
working memory.

In many rule-based systems, the then patterns specify new assertions
to be placed into working memory, and the rule-based system is said to
be a deduction system. In deduction systems, the convention is to re-
fer to each if pattern as an antecedent and to each then pattern as a
consequent. Figure 7.1 shows a graphical notation for deduction-oriented
antecedent—consequent rules.

Sometimes, however, the then patterns specify actions, rather than
assertions—for example, “Put the item into the bag”—in which case the
rule-based system is a reaction system.

In both deduction systems and reaction systems, forward chaining
is the process of moving from the if patterns to the then patterns, using
the if patterns to identify appropriate situations for the deduction of a new
assertion or the performance of an action.

tFacts and assertions are subtly different: A fact is something known to be true;
an assertion is a statement that something is a fact. Thus, assertions can be
false, but facts cannot be false.
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During forward chaining, whenever an if pattern is observed to match
an assertion, the antecedent is satisfied. Whenever all the if patterns
of a rule are satisfied, the rule is triggered. Whenever a triggered rule
establishes a new assertion or performs an action, it is fired.

In deduction systems, all triggered rules generally fire. In reaction
systems, however, when more than one rule is triggered at the same time,
usually only one of the possible actions is desired, thus creating a need for
some sort of conflict-resolution procedure to decide which rule should fire.

A Toy Deduction System Identifies Animals

Suppose that Robbie, a robot, wants to spend a day at the zoo. Robbie can
perceive basic features, such as color and size, and whether an animal has
hair or gives milk, but his ability to identify objects using those features
is limited. He can distinguish animals from other objects, but he cannot
use the fact that a particular animal has a long neck to conclude that he
is looking at a giraffe.

Plainly, Robbie will enjoy the visit more if he can identify the in-
dividual animals. Accordingly, Robbie decides to build ZOOKEEPER, an
identification-oriented deduction system.

Robbie could build ZOOKEEPER by creating one if-then rule for each
kind of animal in the zoo. The consequent side of each rule would be a
simple assertion of animal identity, and the antecedent side would be a
bulbous enumeration of characteristics sufficiently complete to reject all
incorrect identifications.

Robbie decides, however, to build ZOOKEEPER by creating rules that
produce intermediate assertions. The advantage is that the antecedent—
consequent rules involved need have only a few antecedents, making them
easier for Robbie to create and use. Using this approach, ZOOKEEPER
produces chains of conclusions leading to the identification of the animal
that Robbie is currently examining.

Now suppose that Robbie’s local zoo contains only seven animals: a
cheetah, a tiger, a giraffe, a zebra, an ostrich, a penguin, and an alba-
tross. This assumption simplifies ZOOKEEPER, because only a few rules
are needed to distinguish one type of animal from another. One such rule,
rule Z1, determines that a particular animal is a mammal:

Z1 If 2z has hair
then %z is a mammal

Note that antecedents and consequents are patterns that contain variables,
such as z, marked by question-mark prefixes. Whenever a rule is considered,
its variables have no values initially, but they acquire values as antecedent
patterns are matched to assertions.

Suppose that a particular animal, named Stretch, has hair. Then, if
the working memory contains the assertion Stretch has hair, the antecedent
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pattern, ?z has hair, matches that assertion, and the value of z becomes
Stretch. By convention, when variables become identified with values, they
are said to be bound to those values and the values are sometimes called
bindings. Thus, z is bound to Stretch and Stretch is z's binding.

Once a variable is bound, that variable is replaced by its binding wher-
ever the variable appears in the same or subsequently processed patterns.
Whenever the variables in a pattern are replaced by variable bindings, the
pattern is said to be instantiated. For example, the consequent pattern,
?z is a mammal becomes Stretch is a mammal once instantiated by the
variable binding acquired when the antecedent pattern was matched.

Now let us look at other ZOOKEEPER rules. Three others also deter-
mine biological class:

Z2 If ?z gives milk
then 2z is a mammal

Z3 If 2z has feathers
then ?ris a bird

74 If 7z flies
%z lays eggs
then ?ris a bird

The last of these rules, Z4, has two antecedents. Although it does not
really matter for the small collection of animals in ZOOKEEPER’s world,
some mammals fly and some reptiles lay eggs, but no mammal or reptile
does both.

Once ZOOKEEPER knows that an animal is a mammal, two rules deter-
mine whether that animal is carnivorous. The simpler rule has to do with
catching the animal in the act of having its dinner:

Z5 If ?r is a mammal
2z eats meat
then %z is a carnivore

If Robbie is not at the zoo at feeding time, various other factors, if available,
provide conclusive evidence:

76 If ?z is a mammal
?z has pointed teeth
?z has claws
?z has forward-pointing eyes
then %z is a carnivore

All hooved animals are ungulates:
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7 If 21 is a mammal
21 has hoofs
then 2z is an ungulate

If Robbie has a hard time looking at the feet, ZOOKEEPER may still have
a chance because all animals that chew cud are also ungulates:

Z8 If 2z is a mammal
2z chews cud
then 2z is an ungulate

Now that Robbie has rules that divide mammals into carnivores and un-
gulates, it is time to add rules that identify specific animal identities. For
carnivores, there are two possibilities:

Z9 If ?r is a carnivore
?z has tawny color
?z has dark spots
then ?zis a cheetah

Z10 If ¢z is a carnivore
2z has tawny color
9z has black strips

then ?ris a tiger

Strictly speaking, the basic color is not useful because both of the carnivores
are tawny. However, there is no need for information in rules to be minimal.
Moreover, antecedents that are superfluous now may become essential later
as new rules are added to deal with other animals.

For the ungulates, other rules separate the total group into two possi-
bilities:

711 If ?z is an ungulate
2z has long legs
2z has long neck
?z has tawny color
%z has dark spots
then %z is a giraffe

712 If ?z is an ungulate
¢z has white color
?z has black stripes
then ?zis a zebra

Three more rules are needed to handle the birds:
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713 If %z is a bird
?z does not fly
2z has long legs
?z has long neck
9z is black and white
then ¢z is an ostrich

714 If 2z is a bird
?x does not fly
?r swims
2z is black and white
then %z is a penguin

Z15 If 2z is a bird
2z is a good flyer
then %z is an albatross

Now that you have seen all the rules in ZOOKEEPER, note that the animals
evidently share many features. Zebras and tigers have black stripes; tigers,
cheetahs, and giraffes have a tawny color; giraffes and ostriches have long
legs and a long neck; and ostriches and penguins are black and white.

To learn about how forward chaining works, suppose that Robbie is at
the zoo and is about to analyze an unknown animal, Stretch, using Zoo-
KEEPER. Further suppose that the following six assertions are in working
memory:

Stretch has hair.
Stretch chews cud.
Stretch has long legs.
Stretch has a long neck.
Stretch has tawny color:
Stretch has dark spots.

Because Stretch has hair, rule Z1 fires, establishing that Stretch is a mam-
mal. Because Stretch is a mammal and chews cud, rule Z8 establishes that
Stretch is an ungulate.

At this point, all the antecedents for rule Z11 are satisfied. Evidently,
Stretch is a giraffe.

Rule-Based Systems Use a Working Memory and a Rule Base

As you have seen in the ZOOKEEPER system, one of the key representations
in a rule-based system is the working memory:
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A working memory is a representation
In which

> Lexically, there are application-specific symbols and
pattern symbols.

> Structurally, assertions are lists of application-specific
symbols, and patterns are lists of application-specific
symbols and pattern symbols.

> Semantically, the assertions denote facts in some world.
With constructors that

> Add an assertion to working memory

With readers that

> Produce a list of the matching assertions in working
memory, given a pattern

Another key representation is the rule base:

A rule base is a representation

In which

> Lexically, there are application-specific symbols and
pattern symbols.

> Structurally, patterns are lists of application-specific
symbols and pattern symbols, and rules consist of pat-
terns. Some of these patterns constitute the rule’s if
patterns; the others constitute the rule’s then pattern.

> Semantically, rules denote constraints that enable pro-
cedures to seek new assertions or to validate a hypoth-
esis.

With constructors that

> Construct a rule, given an ordered list of if patterns
and a then pattern

With readers that
> Produce a list of a given rule’s if patterns

> Produce a list of a given rule’s then patterns

Thus, ZOOKEEPER uses instances of these representations that are spe-
cialized to animal identification. ZOOKEEPER itself can be expressed in
procedural English, as follows:



126 Chapter 7 Rules and Rule Chaining

Figure 7.2 Knowing
something about an unknown
animal enables identification Has
via forward chaining. Here, the
assertions on the left lead to
the conclusion that the unknown

animal is a giraffe. } )
S ‘ Fired second

F:hews cud

Fired first

Is a mammal

78 Is an ungulate

Fired third

I Has long legs

Is a giraffe
I Has a long neck a1 1

I Has a tawny color
I Has dark spots

To identify an animal with ZOOKEEPER (forward-chaining ver-
sion),

> Until no rule produces a new assertion or the animal is iden-
tified,

> For each rule,

> Try to support each of the rule’s antecedents by match-
ing it to known facts.

> If all the rule’s antecedents are supported, assert the
consequent unless there is an identical assertion already.

> Repeat for all matching and instantiation alternatives.

Thus, assertions flow through a series of antecedent—consequent rules from
given assertions to conclusions, as shown in the history recorded in fig-
ure 7.2. In such diagrams, sometimes called inference nets, the D—shaped
objects represent rules, whereas vertical bars denote given assertions and
vertical boxes denote deduced assertions.

Deduction Systems May Run Either Forward or Backward

So far, you have learned about a deduction-oriented rule-based system
that works from given assertions to new, deduced assertions. Running this
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way, a system exhibits forward chaining. Backward chaining is also possi-
ble: A rule-based system can form a hypothesis and use the antecedent—
consequent rules to work backward toward hypothesis-supporting asser-
tions.

For example, ZOOKEEPER might form the hypothesis that a given ani-
mal, Swifty, is a cheetah and then reason about whether that hypothesis is
viable. Here is a scenario showing how things work out according to such
a backward-chaining approach:

W ZOOKEEPER forms the hypothesis that Swifty is a cheetah. To ver-
ify the hypothesis, ZOOKEEPER considers rule Z9, which requires that
Swifty is a carnivore, that Swifty has a tawny color, and that Swifty
has dark spots.

B ZOOKEEPER must check whether Swifty is a carnivore. Two rules may
do the job, namely rule Z5 and rule Z6. Assume that ZOOKEEPER tries
rule Z5 first.

B ZOOKEEPER must check whether Swifty is a mammal. Again, there
are two possibilities, rule Z1 and rule Z2. Assume that ZOOKEEPER
tries rule Z1 first. According to that rule, Swifty is a mammal if Swifty
has hair.

B ZOOKEEPER must check whether Swifty has hair. Assume ZOOKEEPER
already knows that Swifty has hair. So Swifty must be a mammal, and
ZOOKEEPER can go back to working on rule Z5.

® ZOOKEEPER must check whether Swifty eats meat. Assume Zoo-
KEEPER cannot tell at the moment. ZOOKEEPER therefore must aban-
don rule Z5 and try to use rule Z6 to establish that Swifty is a carnivore.

@ ZOOKEEPER must check whether Swifty is a mammal. Swifty is a
mammal, because this was already established when trying to satisfy
the antecedents in rule Z5.

B ZOOKEEPER must check whether Swifty has pointed teeth, has' claws,
and has forward-pointing eyes. Assume ZOOKEEPER knows that Swifty
has all these features. Evidently, Swifty is a carnivore, so ZOOKEEPER
can return to rule Z9, which started everything done so far.

@ Now ZOOKEEPER must check whether Swifty has a tawny color and
dark spots. Assume ZOOKEEPER knows that Swifty has both features.
Rule Z9 thus supports the original hypothesis that Swifty is a cheetah,
and ZOOKEEPER therefore concludes that Swifty is a cheetah.

Thus, ZOOKEEPER is able to work backward through the antecedent—
consequent rules, using desired conclusions to decide for what assertions
it should look. A backward-moving chain develops, as dictated by the
following procedure:
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Figure 7.3 Knowing

something about an unknown Has forward-pointing eyes

animal enables identification

via backward chaining. Here, Has claws N Fourth rule used

the hypothesis that Swifty is a Has pointed testh ——{ 7g Is a carnivore
cheetah leads to assertions that l )

support that hypothesis.

]
Third rule used

Has
hair
! 1s a mammal
i .. Second rule used
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Has a tawny color 20 Is a cheetah

I Has dark spots

To identify an animal with ZOOKEEPER (backward-chaining

version),

> Until all hypotheses have been tried and none have been
supported or until the animal is identified,

> For each hypothesis,

> For each rule whose consequent matches the current
hypothesis,

> Try to support each of the rule’s antecedents by
matching it to assertions in working memory or by
backward chaining through another rule, creating
new hypotheses. Be sure to check all matching and
instantiation alternatives.

> If all the rule’s antecedents are supported, announce
success and conclude that the hypothesis is true.

In the example, backward chaining ends successfully, verifying the hypothe-
sis, as shown in figure 7.3. The chaining ends unsuccessfully if any required
antecedent assertions cannot be supported.
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The Problem Determines Whether Chaining
Should Be Forward or Backward

Many deduction-oriented antecedent—consequent rule systems can chain
either forward or backward, but which direction is better? This subsection
describes several rules of thumb that may help you to decide.

Most important, you want to think about how the rules relate facts to
conclusions. Whenever the rules are such that a typical set of facts can
lead to many conclusions, your rule system exhibits a high degree of fan
out, and a high degree of fan out argues for backward chaining. On the
other hand, whenever the rules are such that a typical hypothesis can lead
to many questions, your rule system exhibits a high degree of fan in, and
a high degree of fan in argues for forward chaining.

m  If the facts that you have or may establish can lead to a large number of
conclusions, but the number of ways to reach the particular conclusion
in which you are interested is small, then there is more fan out than
fan in, and you should use backward chaining.

@ If the number of ways to reach the particular conclusion in which you
are interested is large, but the number of conclusions that you are likely
to reach using the facts is small, then there is more fan in than fan out,
and you should use forward chaining.

Of course, in many situations, neither fan out nor fan in dominates, leadin
) b b g
you to other considerations:

m  If you have not yet gathered any facts, and you are interested in only
whether one of many possible conclusions is true, use backward chain-
ing.

Suppose, for example, that you do not care about the identity of an animal.

All you care about is whether it is a carnivore. By backward chaining

from the carnivore hypothesis, you ensure that all the facts you gather are

properly focused. You may ask about the animal’s teeth, but you will never
ask about the animal’s color.

@ If you already have in hand all the facts you are ever going to get, and
you want to know everything you can conclude from those facts, use
forward chaining.

Suppose, for example, that you have had a fleeting glimpse of an animal
that has subsequently disappeared. You want to know what you can deduce
about the animal. If you were to backward chain, you would waste time
pursuing hypotheses that lead back to questions you can no longer answer
because the animal has disappeared. Accordingly, you are better off if you
forward chain.

RULE-BASED REACTION SYSTEMS

In deduction systems, the if parts of some if-then rules specify combinations
of assertions, and the then part specifies a new assertion to be deduced



Mycin Diagnoses Bacterial Infections of the Blood

ZOOKEEPER is based on MYCIN, a well-known rule-based deduction system.
Historically, the MYCIN system played a major role in stimulating research in-
terest in rule-based expert systems.

MYCIN’s expertise lies in the domain of bacterial infections. Physicians
usually must begin antibiotic treatment for patients who have bacterial infections
without knowing exactly which organism is the culprit. There is no time to
wait for definitive laboratory culture evidence, which accumulates too slowly.
For the desperately sick, therapy must begin at once—not 2 days from at once.
This requirement leaves two choices: the physician can either prescribe a broad-
spectrum drug that covers all possibilities, or she can prescribe a better, disease-
specific drug.

MYCIN helps the physician to prescribe disease-specific drugs. MYCIN in-
forms itself about particular cases by requesting information from the physician
about a patient’s symptoms, general condition, history, and laboratory-test re-
sults that can be obtained easily and quickly. At each point, the question MYCIN
asks is determined by MYCIN’s current hypothesis and the answers to all previ-
ous questions. Thus, the questions start as though taken from a checklist, but
the questions then vary as evidence builds. Here is an excerpt from a sample
session:

>  What is the patient’s name?
John Doe.
> Male or female?
Male.
> Age?
He is 55.
> Have you obtained positive cultures indicating general type?
Yes.
> What type of infection is it?
Primary bacteremia.
>  When did symptoms first appear?
May 5.
>  Let’s call the most recent positive culture C1. From what site was C1 taken?
From the blood.
>  When?
May 9.
> Let’s call the first significant organism from this culture Ul. Do you know the
identity of U1?
No.
> Is Ul arod or a coccus or something else?
Rod.
>  What is the gram stain of U1?
Gram-negative.
>  Have there been positive cultures from sites that are not associated with the infec-
tions about which you are seeking advice?
No.
> Did Ul grow aerobically?
Yes.



When it is satisfied that it has a reasonably good grasp of the situation,
MYCIN announces its diagnosis:

> My recommendation will be based on the opinion that the identity of Ul may be
. Pseudomonas-aeruginosa

. Klebsiella-pneumoniae

. E. coli

. Bacteroides-fragilis

. Enterobacter

. Proteus-nonmirabilis.

S Gk W

After asking a few more questions about the patient, MYCIN announces its rec-
ommendation:

> On a scale of 0 to 4, where higher numbers indicate greater severity, how would
you rate the patient’s degree of sickness?
3.

> Does the patient have a clinically significant allergic reaction to any antimicrobial
agent?
No.

> How much does the patient weigh?
70 kilograms.

> My first recommendation is as follows: to cover for items 1, 2, 3, 5, and 6, give
gentamycin using a dose of 119 mg (1.7 mg/kg) q8h IV [or IM] for 10 days. Modify
dose in renal failure. Also, to cover for item 4, give clindamycin using a dose of 595
mg (8.5 mg/kg) q6h IV [or IM] for 14 days. If diarrhea or other gastrointestinal
symptoms develop, check for pseudomembranous colitis.

MYCIN’s pool of knowledge consists of approximately 500 antecedent—consequent
rules, which give MYCIN the ability to recognize about 100 causes of bacterial
infections. The following rule is typical:

MS88 If ?z’s type is primary bacteremia
the suspected entry point of ?x is the gastrointestinal tract
the site of the culture of 2z is one of the sterile sites
then there is evidence that ?z is bacteroides

MYCIN is a backward-chaining system, because physicians prefer to think about
one hypothesis at a time. By sticking with the questions that are relevant to
a particular hypothetical conclusion, the questioning is guaranteed to remain
relevant to that hypothesis. A forward-running system can jump around, working
first toward one conclusion and then toward another, seemingly at random.

Another reason why MYCIN was designed to be a backward-chaining system
is that backward chaining simplifies the creation of an English-language interface.
The interface needs to deal only with answers to specific questions, rather than
with free-form, imaginative text.
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directly from the triggering combination. In reaction systems, which are
introduced in this section, the if parts specify the conditions that have to be
satisfied and the then part specifies an action to be undertaken. Sometimes,
the action is to add a new assertion; sometimes it is to delete an existing
assertion; sometimes, it is to execute some procedure that does not involve
assertions at all.

A Toy Reaction System Bags Groceries

Suppose that Robbie has just been hired to bag groceries in a grocery store.
Because he knows little about bagging groceries, he approaches his new job
by creating BAGGER, a rule-based reaction system that decides where each
item should go.

After a little study, Robbie decides that BAGGER should be designed
to take four steps:

1 The check-order step: BAGGER analyzes what the customer has se-
lected, looking over the groceries to see whether any items are missing,
with a view toward suggesting additions to the customer.

2 The bag-large-items step: BAGGER bags the large items, taking care
to put the big bottles in first.

3 The bag-medium-items step: BAGGER bags the medium items, taking
care to put frozen ones in freezer bags.

4 The bag-small-items step: BAGGER bags the small items.

Now let us see how this knowledge can be captured in a rule-based reaction
system. First, BAGGER needs a working memory. The working memory
must contain assertions that capture information about the items to be
bagged. Suppose that those items are the items listed in the following
table:

Item Container type Size Frozen?
Bread plastic bag medium no
Glop jar small no
Granola cardboard box large no
Ice cream cardboard carton medium yes
Potato chips  plastic bag medium no
Pepsi bottle large no

Next, BAGGER needs to know which step is the current step, which bag
is the current bag, and which items already have been placed in bags. In
the following example, the first assertion identifies the current step as the
check-order step, the second identifies the bag as Bagl, and the remainder
indicate what items are yet to be bagged:
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Step is check-order

Bagl is a bag

Bread is to be bagged

Glop is to be bagged

Granola is to be bagged

Ice cream is to be bagged
Potato chips are to be bagged

Note that working memory contains an assertion that identifies the step.
Each of the rules in BAGGER’s rule base tests the step name. Rule B1, for
example, is triggered only when the step is the check-order step:

B1 If step is check-order
potato chips are to be bagged
there is no Pepsi to be bagged
then ask the customer whether he would like a bottle of Pepsi

The purpose of rule Bl is to be sure the customer has something to drink
to go along with potato chips, because potato chips are dry and salty.
Note that rule B1’s final condition checks that a particular pattern does
not match any assertion in working memory.

Now let us move on to a rule that moves BAGGER from the check-order
step to the bag-large-items step:

B2 If step is check-order
then step is no longer check-order
step is bag-large-items

Note that the first of rule B2’s actions deletes an assertion from working
memory. Deduction systems are assumed to deal with static worlds in
which nothing that is shown to be true can ever become false. Reaction
systems, however, are allowed more freedom. Sometimes, that extra free-
dom is reflected in the rule syntax through the breakup of the action part
of the rule, marked by then, into two constituent parts, marked by delete
and add. When you use this alternate syntax, rule B2 looks like this:

B2 (add-delete form)
If step is check-order
delete  step is check-order
add step is bag-large-items

The remainder of BAGGER'’s rules are expressed in this more transparent
add—delete syntax.

At first, rule B2 may seem dangerous, for it looks as though it could
prevent rule Bl from doing its legitimate and necessary work. There is
no problem, however. Whenever you are working with a reaction system,
you adopt a suitable conflict-resolution procedure to determine which rule
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to fire among many that may be triggered. BAGGER uses the simplest
conflict-resolution strategy, rule ordering, which means that the rules are
arranged in a list, and the first rule triggered is the one that is allowed to
fire. By placing rule B2 after rule B1, you ensure that rule B1 does its job
before rule B2 changes the step to bag-large-items. Thus, rule B2 changes
the step only when nothing else can be done.

Use of the rule-ordering conflict resolution helps you out in other ways
as well. Consider, for example, the first two rules for bagging large items:

B3 If step is bag-large-items
a large item is to be bagged
the large item is a bottle
the current bag contains < 6 large items
delete  the large item is to be bagged
add the large item is in the current bag

B4 It step is bag-large-items
a large item is to be bagged
the current bag contains < 6 large items
delete  the large item is to be bagged
add the large item is in the current bag

Big items go into bags that do not have too many items already, but the
bottles—being heavy—go in first. The placement of rule B3 before rule B4
ensures this ordering.

Note that rules B3 and B4 contain a condition that requires count-
ing, so BAGGER must do more than assertion matching when looking for
triggered rules. Most rule-based systems focus on assertion matching, but
provide an escape hatch to a general-purpose programming language when
you need to do more than just match an antecedent pattern to assertions
in working memory.

Evidently, BAGGER is to add large items only when the current bag

contains fewer than six items.! When the current bag contains six or more
items, BAGGER uses rule B5 to change bags:

B5 If step is bag-large-items
a large item is to be bagged
an empty bag is available
delete  the current bag is the current bag
add the empty bag is the current bag

Finally, another step-changing rule moves BAGGER to the next step:

TPerhaps a better BAGGER system would use volume to determine when bags are
full; to deal with volume, however, would require general-purpose computation
that would make the example unnecessarily complicated, albeit more realistic.
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B6 If step is bag-large-items
delete  step is bag-large-items
add step is bag-medium-items

Let us simulate the result of using these rules on the given database. As
we start, the step is check-order. The order to be checked contains potato
chips, but no Pepsi. Accordingly, rule B1 fires, suggesting to the customer
that perhaps a bottle of Pepsi would be nice. Let us assume that the
customer goes along with the suggestion and fetches a bottle of Pepsi.

Inasmuch as there are no more check-order rules that can fire, other
than rule B2, the one that changes the step to bag-large-items, the step
becomes bag-large-items.

Now, because the Pepsi is a large item in a bottle, the conditions for
rule B3 are satisfied, so rule B3 puts the Pepsi in the current bag. Once the
Pepsi is in the current bag, the only other large item is the box of granola,
which satisfies the conditions of rule B4, so it is bagged as well, leaving the
working memory in the following condition:

Step is bag-medium-items
Bagl contains Pepsi

Bagl contains granola

Bread is to be bagged

Glop is to be bagged

Ice cream is to be bagged
Potato chips are to be bagged

Now it is time to look at rules for bagging medium items.

B7 If step is bag-medium-items
a medium item is frozen, but not in a freezer bag
delete the medium item is not in a freezer bag
add the medium item is in a freezer bag

B8 If step is bag-medium-items
a medium item is to be bagged
the current bag is empty or contains only medium items
the current bag contains no large items
the current bag contains < 12 medium items
delete  the medium item is to be bagged
add the medium item is in the current bag

B9 If step is bag-medium-items
a medium item is to be bagged
an empty bag is available
delete the current bag is the current bag
add the empty bag is the current bag
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Note that the fourth condition that appears in rule B8 prevents BAGGER
from putting medium items in a bag that already contains a large item. If
there is a bag that contains a large item, rule B9 starts a new bag.

Also note that rule B7 and rule B8 make use of the rule-ordering
conflict-resolution procedure. If both rule B7 and rule B8 are triggered,
rule B7 is the one that fires, ensuring that frozen things are placed in
freezer bags before bagging.

Finally, when there are no more medium items to be bagged, neither
rule B7 nor rule B8 is triggered; instead, rule B10 is triggered and fires,
changing the step to bag-small-items:

B10 If step is bag-medium-items
delete step is bag-medium-items
add step is bag-small-items

At this point, after execution of all appropriate bag-medium-item rules,
the situation is as follows:

Step is bag-small-items

Bagl contains Pepsi

Bagl contains granola

Bag2 contains bread

Bag2 contains ice cream (in freezer bag)
Bag2 contains potato chips

Glop is to be bagged

Note that, according to simple rules used by BAGGER, medium items do
not go into bags with large items. Similarly, conditions in rule B11 ensure
that small items go in their own bag:

B11 If step is bag-small-items
a small item is to be bagged
the current bag contains no large items
the current bag contains no medium items
the bag contains < 18 small items
delete  the small item is to be bagged
add the small item is in the current bag

BAGGER needs a rule that starts a new bag;:

B12 If step is bag-small-items
a small item is to be bagged
an empty bag is available
delete the current bag is the current bag
add the empty bag is the current bag

Finally, BAGGER needs a rule that detects when bagging is complete:
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B13 If step is bag-small-items
delete  step is bag-small-items
add step is done

After all rules have been used, everything is bagged:

Step is done

Bagl contains Pepsi

Bagl contains granola

Bag2 contains bread

Bag2 contains ice cream (in freezer bag)
Bag2 contains potato chips

Bag3 contains glop

Reaction Systems Require Conflict Resolution Strategies

Forward-chaining deduction systems do not need strategies for conflict res-
olution because every rule presumably produces reasonable assertions, so
there is no harm in firing all triggered rules. But in reaction systems,
when more than one rule is triggered, you generally want to perform only
one of the possible actions, thus requiring a conflict-resolution strategy
to decide which rule actually fires. So far, you have learned about rule
ordering;:

B Rule ordering. Arrange all rules in one long prioritized list. Use the
triggered rule that has the highest priority. Ignore the others.

Here are other possibilities:

8 Context limiting. Reduce the likelihood of conflict by separating the
rules into groups, only some of which are active at any time.

@ Specificity ordering. Whenever the conditions of one triggered rule are
a superset of the conditions of another triggered rule, use the superset
rule on the ground that it deals with more specific situations.

® Datae ordering. Arrange all possible assertions in one long prioritized
list. Use the triggered rule that has the condition pattern that matches
the highest priority assertion in the list.

B Size ordering. Use the triggered rule with the toughest requirements,
where toughest means the longest list of conditions.

B Recency ordering. Use the least recently used rule.

Of course, the proper choice of a conflict resolution strategy for a reaction
system depends on the situation, making it difficult or impossible to rely on
a fixed conflict resolution strategy or combination of strategies. An alter-
native is to think about which rule to fire as another problem to be solved.
An elegant example of such problem solving is described in Chapter 8 in
the introduction of the SOAR problem solving architecture.
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PROCEDURES FOR FORWARD AND
BACKWARD CHAINING

In this section, you learn more about rule-based systems. The focus is on
how to do forward and backward chaining using well-known methods for
exploring alternative variable bindings.

Depth-First Search Can Supply Compatible
Bindings for Forward Chaining

One simple way to do forward chaining is to cycle through the rules, looking
for those that lead to new assertions once the consequents are instantiated
with appropriate variable bindings:

To forward chain (coarse version),
> Until no rule produces a new assertion,
> For each rule,

> For each set of possible variable bindings determined
by matching the antecedents to working memory,

> Instantiate the consequent.

> Determine whether the instantiated consequent is
already asserted. If it is not, assert it.

For an example, let us turn from the zoo to the track, assuming the follow-
ing assertions are in working memory:

Comet is-a horse
Prancer is-a horse
Comet is-a-parent-of  Dasher
Comet is-a-parent-of Prancer
Prancer is fast
Dasher is-a-parent-of Thunder
Thunder is fast
Thunder is-a horse
Dasher is-a horse

Next, let us agree that a horse who is the parent of something fast is
valuable. Translating this knowledge into an if-then rule produces the
following:

Parent Rule
If ?r is-a horse
?z is-a-parent-of Zy
2y is fast
then 2z is valuable



XCON Configures Computer Systems

BAGGER is based on XCON, a well-known rule-based deduction system. Histor-
ically, the XCON system played a major role in stimulating commercial interest
in rule-based expert systems.

XCON’s domain is computer-system components. When a company buys a
big mainframe computer, it buys a central processor, memory, terminals, disk
drives, tape drives, various peripheral controllers, and other paraphernalia. All
these components must be arranged sensibly along input-output buses. More-
over, all the electronic modules must be placed in the proper kind of cabinet in
a suitable slot of a suitable backplane.

Arranging all the components is a task called configuration. Doing configura-
tion can be tedious, because a computer-component family may have hundreds of
possible options that can be organized in an unthinkable number of combinations.

To do configuration, XCON uses rules such as the following:

X1 If the context is doing layout and assigning a power supply
an sbi module of any type has been put in a cabinet
the position that the sbi module occupies is known
there is space available for a power supply
there is no available power supply
the voltage and frequency of the components are known
then add an appropriate power supply

X2 If the context is doing layout and assigning a power supply
an sbi module of any type has been put in a cabinet
the position the sbi module occupies is known
there is space available for a power supply
there is an available power supply
then put the power supply in the cabinet in the available space

The first rule, X1, acts rather like the one in BAGGER that asks the customer
whether he wants a bottle of Pepsi if the order contains potato chips but no
beverage. The second rule, X2, is a typical insertion rule. The context mentioned
in both rules is a combination of the top-level step and a substep. The context
is changed by rules such as the following:

X3 If the current context is z
then deactivate the z context
activate the y context

Rule X3 has the effect of deleting one item from the context designation and
adding another. It fires only if no other rule associated with the context triggers.

XCON has nearly 10,000 rules and knows the properties of several hundred
component types for VAX computers, made by Digital Equipment Corporation.
XCON routinely handles orders involving 100 to 200 components. It is represen-
tative of many similar systems for marketing and manufacturing.
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Figure 7.4 During forward
chaining, binding commitments
can be arranged in a tree,
suggesting that ordinary search
methods can be used to find
one or all of the possible
binding sets. Here, the parent
rule’s first antecedent leads to
four possible bindings for x, and
the rule’s second antecedent,
given that x is bound to Comet,
leads to two possible bindings
for y.

Now, if there is a binding for z and a binding for y such that each antecedent
corresponds to an assertion when the variables are replaced by their bind-
ings, then the rule justifies the conclusion that the thing bound to z is
valuable. For example, if z is bound to Comet and y is bound to Prancer,
then each of the antecedents corresponds to an assertion—namely Comet
is-a horse, Comet is-a-parent-of Prancer, and Prancer is fast. Accordingly,

[x[ Comet | [x[Prancer| [x[Thunder] [x]Dasher|

y| Dasher| |y|Prancer
x| Comet | |x| Comet
y|Prancer
x| Comet

?x is-a horse

?x is-a-parent-of 7y

%y is fast

Comet must be valuable.

be arranged in a search tree.

To conduct a search for binding pairs, you can start by matching the
first antecedent against each assertion. As shown in figure 7.4, there are
four matches and four corresponding binding choices for zin the antecedent
2z is-a horse, because Comet, Prancer, Thunder, and Dasher are all horses.

Next, proceeding in the depth-first search style, assume that z’s binding
should be Comet, which is the binding produced by the first match. Then,
with z bound to Comet, the second assertion, after instantiation, is Comet
is-a-parent-of ?y. Matching this second instantiated antecedent against
each assertion produces two matches, because Comet is a parent of both
Dasher and Prancer. Thus, there are two binding choices for y given that
z is bound to Comet.

Figure 7.4 show how the z and y choices fit together. Evidently, each
of the two antecedents examined so far produces binding choices that can

Traveling along the leftmost branch, with z bound to Comet and y
bound to Dasher, you proceed to the third antecedent, which becomes
Dasher is fast when instantiated with y’s binding. This instantiated an-
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Figure 7.5 Two paths extend
from the root down through the
levels corresponding to three
rule antecedents. Evidently,
there are two binding sets that

satisfy the rule.
.. ]

?x is-a horse
[x] Comet | [x[Prancer| [x[Thunder] [x[Dasher]
>< >< ?x is-a-parent-of 7y
y| Dasher| |y|Prancer y [Thunder|
x| Comet | |x| Comet x| Dasher
?y is fast
y|Prancer y|Thunder
x| Comet x| Dasher

tecedent fails to match any assertion, however, so you have to look farther
for an acceptable combination. You do not have to look far, because the
combination with z bound to Comet, as before, and y bound to Prancer
leads to the instantiation of the third antecedent as Prancer is fast, which
does match an assertion. Accordingly, you can conclude that the combi-
nation with z bound to Comet and y bound to Prancer is a combination
that jumps over all the antecedent hurdles. You can use this combination
to instantiate the consequent, producing Comet is valuable.

As shown in figure 7.4, there are three other choices for bindings.
Among these, if z is bound to Prancer or Thunder, then the second as-
sertion, once instantiated, becomes Prancer is-a-parent-of 2y or Thunder
is-a-parent-of ?y, both of which fail to match any assertion. If Dasher is
the proper binding, then Dasher is-a-parent-of ?y matches just one asser-
tion, Dasher is-a-parent-of Thunder, leaving only Thunder as a choice for
y¥'s binding. With z bound to Dasher and y bound to Thunder, the third
instantiated antecedent is Thunder is fast, which matches an assertion,
leading to the conclusion, as shown in figure 7.5, that the Dasher-Thunder
combination also jumps over all the hurdles, suggesting that Dasher is valu-
able too.

From this example, several points of interest emerge. First, you can
see that each path in the search tree corresponds to a set of binding com-
mitments. Second, each antecedent matches zero or more assertions given
the bindings already accumulated along a path, and each successful match
produces a branch. Third, the depth of the search tree is always equal
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to the number of antecedents. Fourth, you have a choice, as usual, about
how you search the tree. Exhaustive, depth-first, left-to-right search is the
usual method when the objective is to find all possible ways that a rule can
be deployed. This method is the one exhibited in the following procedure:

To forward chain (detailed version),
> Until no rule produces a new assertion,
> For each rule,

> Try to match the first antecedent with an existing asser-
tion. Create a new binding set with variable bindings
established by the match.

> Using the existing variable bindings, try to match the
next antecedent with an existing assertion. If any new
variables appear in this antecedent, augment the exist-
ing variable bindings.
> Repeat the previous step for each antecedent, accumu-
lating variable bindings as you go, until,
> There is no match with any existing assertion using
the binding set established so far. In this case, back
up to a previous match of an antecedent to an asser-
tion, looking for an alternative match that produces
an alternative, workable binding set.

> There are no more antecedents to be matched. In this
case,

> Use the binding set in hand to instantiate the con-
sequent.

> Determine if the instantiated consequent is already
asserted. If not, assert it.

> Back up to the most recent match with unexplored
bindings, looking for an alternative match that pro-
duces a workable binding set.

> There are no more alternatives matches to be explored
at any level.

Depth-First Search Can Supply Compatible
Bindings for Backward Chaining

You learned that forward chaining can be viewed as searching for variable-
binding sets such that, for each set, all antecedents correspond to assertions
once their variables are replaced by bindings from the set.

Backward chaining can be treated in the same general way, but there
are a few important differences and complications. In particular, you start
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by matching a hypothesis both against existing assertions and against rule
consequents.

Suppose, for example, that you are still working with horses using the
same rules and assertions in working memory as before. Next, suppose that
you want to show that Comet is valuable; in other words, suppose that you
want to verify the hypothesis, Comet is valuable. You fail to find a match
for Comet is valuable among the assertions, but you succeed in matching
the hypothesis with the rule consequent, ?z is valuable. The success leads
you to attempt to match the antecedents, presuming that z is bound to
Comet.

Happily, the instantiated first antecedent, Comet is-a horse, matches
an assertion, enabling a search for the instantiated second antecedent,
Comet is-a-parent-of y. This second antecedent leads to two matches, one
with the assertion Comet is-a-parent-of Dasher and one with the assertion
Comet is-a-parent-of Prancer. Accordingly, the search branches, as shown
in figure 7.6.

Along the left branch, y is bound to Dasher, leading to a futile at-
tempt to match the third antecedent Dasher is fast to an assertion. Along
the right branch, however, y is bound to Prancer, leading to a successful
attempt to match Prancer is fast to an assertion.

Evidently, the hypothesis, Comet is valuable, is supported by the com-
bination of the given rule and the given assertions because a binding set,
discovered by search, connects the hypothesis with the assertions via the
rule.

The search is more complicated, however, when the hypothesis itself
contains a variable. Suppose that the question is “Who is valuable?” rather
than “Is Comet valuable?” Then, the hypothesis itself, ?z is valuable,
contains a variable, z.

This new hypothesis, like the hypothesis Comet is valuable, matches no
assertions but does match the consequent, ?r is valuable. Now, however,
you have a match between two variables, z and =, instead of a constant,
Comet, and a variable, z.

Accordingly, now that it is time to match the first antecedent with
the assertions, you go into the match with z bound to z. The variable z
is not bound to anything, however, so the match of the first antecedent
proceeds unfettered, as though the chaining were forward. There are four
possible matches of the first antecedent to assertions, with z bound to any
one of Comet, Prancer, Thunder, or Dasher. Then, assuming &’s binding
should be Comet, and working through the bindings allowed by the next
two assertions, you are led to one of the results shown in figure 7.7, with 2
bound to z, £ bound to Comet, and y bound to Prancer.

The fact that 2, the variable in the hypothesis, matches z, a variable in
a rule, need cause you no serious pause. The only additional task you need
to perform is to instantiate all the way to constants whenever you have an
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Figure 7.6 During backward
chaining, as during forward
chaining, binding commitments
can be arranged in a tree, but
the first binding commitments 2x is valuable
are established by the
consequent, rather than by
the first antecedent. Here, the Blgom_etl
consequent establishes one
binding for x, and the second
antecedent establishes two ?x is-a horse
bindings for y. The binding for
x and one of the two bindings

for y establish that Comet is Comet
valuable.
?x is-a-parent-of ?y
yi Dasher| |y|Prancer
x| Comet | x| Comet

’ 7y is fast

Prancer
Comet

-

x

option to continue instantiating. Thus, you first replace z by z, and then
you replace z by Comet, producing an instantiated hypothesis of Comet is
valuable.

At this point, you could, if you wished, continue to look for other ways
to bind variables so as to find other valuable horses.

The search is still more complicated when more than one rule can pro-
vide a variable binding. Suppose, for example, that you have the hypothesis
with the variable, ?z is valuable, but that you now add a new rule and two
new assertions:

Winner Rule
If 2w is-a winner
then fwis fast
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Figure 7.7 During backward
chaining, hypothesis variables
can be bound not only to
assertion constants but also to
consequent variables. Here, the
hypothesis variable z is bound
to the consequent variable x.
Ultimately, two binding sets

are found, establishing that two

horses are valuable.
. |

?z is valuable

?x is-a horse

x| Comet | |x|Prancer| (x|Thunder| |x|Dasher

z| x z| x z| x z| x
‘ t ?x is-a-parent-of 7y

y| Dasher| |y|Prancer y {Thunder|

x| Comet | x| Comet x| Dasher
z| x z| x z| x

?y is fast

>< y|Prancer y|Thunder|

x| Comet x| Dasher
z| x z| x

Dasher Is-a  Winner
Prancer Is-a Winner

Now, the search proceeds as before, as shown in figure 7.8, until it is time
to find a match for the third antecedent, ?y is fast. The first time, with
y bound to Dasher, there is no matching assertion, but there is a match
between the second rule’s consequent w is fast and the instantiated first-
rule antecedent, Dasher is fast. Consequently, w becomes bound to Dasher,
and an effort is made to find a match between the second rule’s instantiated
antecedent, Dasher is-a winner, against an assertion. Because there is a
match with one of the two new assertions, you can conclude that Dasher
is indeed fast, which means that the original hypothesis, ?z is valuable,
can be connected via rules to assertions using the binding set with w and
y bound to Dasher, z bound to Comet, and z bound to z. To instantiate
the hypothesis with this binding set, you first replace z with z, and then
replace z with Comet.

Note that you can gain nothing by trying to find a second match for
the instantiated antecedent, Comet is-a-parent-of y, because the ultimate
conclusion, that Comet is valuable, has already been reached. Nevertheless,
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Figure 7.8 During backward
chaining, rules chain together 72 is valuable
whenever the antecedent of
one matches the consequent of
another. Here, an antecedent,
?y is fast, in one rule matches ?x is-a horse
a consequent, ?w is fastin
another rule. x| Comet | |x|Prancer| (x|Thunder| |xiDasher
4 X r4 X Z X z X
‘ } ?x is-a-parent-of 7y
y| Dasher | |y|Prancer y|Thunder|
x| Comet | x| Comet x| Dasher
z X ¥4 X Z X
Py is fast
y|Prancer y [Thunder|
x| Comet x| Dasher
Z X Z X
2w is fast
w| Dasher w| Prancer w|Thunder|
y| Dasher y!|Prancer y|Thunder|
x| Comet x| Comet x| Dasher
2l x 2| x 2zl x
7w is-a winner
w| Dasher w|Prancer ><
y| Dasher y|Prancer
x| Comet x| Comet
2l «x z| x

most binding-set programs are not smart enough to realize that nothing
is to be gained, so they look for other ways to bind y using Comet is-a-
parent-of y.

As shown in figure 7.8, y can be bound to Prancer, which leads to an
attempt to match the third antecedent, Prancer is fast with an assertion;
the match succeeds, reaffirming, with a different binding set, that Comet
is valuable.

Displaying even more energy, most binding programs not only note
that the instantiated antecedent, Prancer is fast, is in the database; they
also note, as shown in figure 7.8, that there is a rule that links Prancer s
fast to the assertion Prancer is-a winner, thus reaffirming, for a third time,
with a binding set that includes a binding for w, that Comet is valuable.
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Similarly, when searching for evidence that Dasher is valuable, the in-
stantiated antecedent, Thunder is fast, is not only matched to an assertion,
it is matched to the consequent, w is fast, in the second rule. This time,
however, the instantiated antecedent in the second rule, w is-a winner,
does not match any assertion, so there remains just one way of showing
that Dasher is valuable.

In summary, the backward-chaining procedure moves from the initial
hypothesis, through rules, to known facts, establishing variable bindings
in the process. When the initial hypothesis matches the consequent of a
rule, you create a binding set. Additional bindings are added to the initial
binding set as the backward-chaining procedure works on the antecedents,
and still more bindings are added when the procedure chains through an
antecedent to the consequent of another rule. The following procedure
summarizes:

To backward chain,

> Find a rule whose consequent matches the hypothesis (or
antecedent) and create a binding set (or augment the existing
binding set).

> Using the existing binding set, look for a way to deal with
the first antecedent,

> Try to match the antecedent with an existing assertion.

> Treat the antecedent as an hypotheses and try to support
it by backward chaining through other rules using the ex-
isting binding set.

> Repeat the previous step for each antecedent, accumulating

variable bindings, until,

> There is no match with any existing assertion or rule con-
sequent using the binding set established so far. In this
case, back up to the most recent match with unexplored
bindings, looking for an alternative match that produces
a workable binding set.

> There are no more antecedents to be matched. In this case,
the binding set in hand supports the original hypothesis.

> If all possible binding sets are desired, report the current
binding set, and back up, as if there were no match.

> If only one possible binding set is desired, report the
current binding set and quit.

> There are no more alternative matches to be explored at
any level.
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Relational Operations Support Forward Chaining

Now it is time to look at another approach to forward chaining. First,
you learn how relational database operations can handle the bookkeeping
required for forward chaining. Then, you learn how the relational database
operations can be arranged to produce high-speed operation.

All that you need to know about relational databases in this section
is introduced as you need it. If you have not studied relational databases
elsewhere, and find the introduction in this section to be too brief, read
the appendix, which describes relational databases in more detail.

Now consider the Parent Rule and assertions previously used to demon-
strate the search-oriented approach. Here, again, is the Parent Rule.

Parent Rule
If ?z is-a horse
9z is-a-parent-of %y
2y is fast
then %z is valuable

Now think of the assertions as though they were part of a table. In the
language of relations, the assertions are recorded in a relation, named
Data, whose columns are labeled with field names—namely First, Second,
and Third:

First Second Third
Comet is-a horse
Prancer is-a horse
Comet is-a-parent-of Dasher
Comet is-a-parent-of Prancer
Prancer is fast
Dasher is-a-parent-of Thunder
Thunder is fast
Thunder is-a horse
Dasher is-a horse

To determine what values of z and y trigger the rule, you first determine
which of the relation’s records match the first antecedent in the rule, 2z is-
a horse. In the language of relations, you need to find those records whose
Second field value is is-a and whose Third field value is horse. Conve-
niently, relational database systems include an access procedure, SELECT,
that extracts records with specified field values from one relation to pro-
duce a new relation with fewer records. You can ask SELECT to pick the
horses out of the Data relation, for example:
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SELECT Data with Second = is-a and Third = horse

The result is the new relation:

First Second Third
Comet is-a horse
Prancer is-a horse
Thunder is-a horse
Dasher is-a horse
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All you really want to know, however, is which bindings of z produce
matches. Accordingly, you use another relational database access proce-
dure, PROJECT, to isolate the appropriate field:

PROJECT Result over First

At this point, the field named First is renamed X to remind you that it
consists of bindings for the z variable. The result, a single-field relation, is
as follows:

Al| x

Comet

Prancer
Thunder
Dasher

Next, you determine which of the records in the data relation match the
second antecedent in the rule, ?z is-a-parent-of ?y. You need to select
those records whose Second field value is is-a-parent-of. Then you project
the results over the First and Third fields:

PROJECT  [SELECT Data with Second = is-a-parent-of]
over First and Third

After renaming the field named First to X and the field named Third to
Y, you have the following table:

A20 x Y
Comet Dasher
Comet Prancer
Dasher Thunder
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Finally, you need to determine which of the records in the data relation
match the third antecedent in the rule, %y is fast. Accordingly, you select
those records whose Second field value is is and whose Third field value is
fast, and you project the result over the First field:

PROJECT  [SELECT Data with Second = is and Third = fast]
over First

After renaming the field named First to Y, reflecting the fact that the field
values are possible bindings for y, you have the following table:

A3 v

Prancer

Thunder

You now have three new relations-A1, A2, and A3—corresponding to the
three antecedents in the rule. The next question is, What bindings of z
satisfy both the first and second antecedents? Or, What field values are
found both in Al’s X field and in A2’s X field?

The JOIN operation builds a relation with records constructed by con-
catenating records, one from each of two source tables, such that the records
match in prescribed fields. Thus, you can join A1 and A2 over their X fields
to determine which values of z are shared. Here is the required JOIN oper-
ation:

JOIN Al and A2 with X =X

The result is a relation in which field-name ambiguities are eliminated by
concatenation of ambiguous field names with the names of the relations
that contribute them:

Bl (preliminary) [ X A1 X.A2 Y
Comet Comet Dasher
Comet Comet Prancer
Dasher Dasher Thunder

All you really want, of course, is to find the pairs of bindings for z and
y that satisfy the first two antecedents. Accordingly, you can project the

preliminary Bl relation over, say, X.Al and Y, with the following result,
after renaming of the fields:
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Bl| x Y
Comet Dasher
Comet Prancer
Dasher Thunder

B1 now contains binding pairs that simultaneously satisfy the first two
antecedents in the rule. Now you can repeat the analysis to see which of
these binding pairs also satisfy the third antecedent.

To begin, you join A3 and Bl over their Y fields to determine which
values of y are shared:

JOIN A3and Bl withY =Y

The result is as follows:

B2 (preliminary) | y.A3 X Y.B1
Prancer Comet Prancer
Thunder Dasher Thunder

Now you project to determine the pairs of bindings for z and y that satisfy
not only the first two antecedents, but also the third:

B2| x Y
Comet Prancer
Dasher Thunder

At this point, you know that there are two binding pairs that simultane-
ously satisfy all three antecedents. Inasmuch as the then part of the rule
uses only the binding of z, you project B2 over the X field:

B2 x

Comet
Dasher

Thus, the parent rule is triggered in two ways: once with z bound to Comet,
and once with z bound to Dasher. In a deduction system, both binding sets
can be used. In a reaction system, a conflict-resolution procedure would
be required to select the next action.

The only problem with the procedure that you just learned about
is that it consumes a large amount of computation. If a rule has n an-
tecedents, then it takes n SELECT and n PROJECT operations to produce
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the A relations along with n — 1 JOIN and n — 1 PROJECT operations to
produce the B relations. If there happen to be m rules, and if you check out
each rule whenever a new assertion is added to the data relation, then you
have to perform mn SELECTs, m(2n — 1) PROJECTS, and most alarmingly,
m(n — 1) expensive JOINS each time a new assertion is added. Fortunately,
there is another way to search for variable bindings that does not use so
many operations.

The Rete Approach Deploys Relational
Operations Incrementally

You have just learned how to use relational operations to find binding sets,
but the method described is an expensive way to do forward chaining, be-
cause a great deal of work has to be done to trigger a rule. Now you are
ready to learn that the relational operations can be performed incremen-
tally, as each new assertion is made, reducing both the total amount of work
and the time it takes to trigger a rule once all the triggering assertions are
in place.

Ordinarily, the word rete is an obscure synonym for net, found only
in large dictionaries. In the context of forward chaining, however, the
word rete procedure names a procedure that works by moving each new
assertion, viewed as a relational record, through a rete of boxes, each of
which performs a relational operation on one relation or on a few, but never
on all the relations representing accumulated assertions.

The arrangement of the rete for the valuable-horse example is shown
in figure 7.9.

As a new assertion is made, it becomes a single-record relation. That
single-record relation is then examined by a family of SELECT operations,
each of which corresponds to a rule antecedent.

In the example, the first assertion is Comet is-a horse. Accordingly,
the following single-record relation is constructed:

New-assertion | First Second Third

Comet is-a horse

This relation is examined by three SELECT operations:

SELECT new-assertion with Second = is-a and Third = horse
SELECT new-assertion with Second = is-a-parent-of
SELECT new-assertion with Second = is and Third = fast

Next, whenever the record in the single-record relation makes it past a
SELECT operation, the single-record relation endures a PROJECT operation
that picks off the field or fields that contain bindings.
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Assertions

SELECT assertion with Second = is-a and Third = horse

SELECT assertion with Second = is-a-parent-of

SELECT assertion with Second = is and Third = fast

Figure 7.9 The rete for a simple rule about horses with fast offspring. Here the state of the rete is captured just
following the addition made in response to the first assertion. In this and other figures, the most recent changes
are shown shaded.
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In the example, the record makes it past the first of the three SELECT
operations, whereupon the PROJECT and renaming operations produce the
following:

New-assertion| x

Comet

Once a record has gone past the SELECT, PROJECT, and renaming oper-
ations, it is added to a relation associated with a rule antecedent. Each
antecedent-specific relation is located at an alpha node created specifically
for the antecedent. Each alpha-node relation accumulates all the assertions
that make it through the corresponding, filterlike SELECT operation. In the
example, the selected, projected, and renamed record is added to the Al
node—the one attached to the first antecedent.

The second assertion, Prancer is-a horse, follows the first through the
rete, and also ends up as a record in the relation attached to the Al node.
Then, the third assertion, Comet is-a-parent-of Dasher, following a different
route, ends up as a record in the relation attached to the A2 node.

Each addition to an alpha node’s relation inspires an attempt to join
the added record, viewed as a single-record relation, with another relation.
In particular, an addition to either Al’s relation or A2’s relation leads to
joining of the added record, viewed as a single-record relation, with the
relation attached to the other alpha node. Importantly, the JOIN opera-
tion is done with a view toward determining whether the variable binding
expressed in the added record corresponds to a variable binding already
established in the other relation.

In the example, the added record—the one added to A2’s relation—
produces the following single-record relation:

X Y

Comet Dasher

Meanwhile, A1’s relation has accumulated two records:

Al x

Comet

Prancer

Joining the two relations over the X field and projecting to eliminate one
of the redundant X fields yields a one-record, two-field relation:
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X Y

Comet Dasher

This new relation is then added to a relation attached to a beta node—
the B12 node—so named because it is the JOIN of the A1 and A2 relations.
B12’s relation contains a single record that records a pair of bindings for z
and y that satisfies the first and second antecedents.

Thus, an addition to either A1’s relation or A2’s relation leads to a JOIN
operation that may add one or more records to B12’s relation reflecting
variable bindings that satisfy the first two rule antecedents simultaneously.

The next assertion—the fourth—Comet is-a-parent-of Prancer, pro-
duces the wave of activity in the rete shown by the shading in figure 7.10.

The wave starts with the addition of a second record to A2’s rela-
tion. This new record, viewed as a single-record relation, is joined to Al’s
relation, producing a second record for B12’s relation.

Because it is tiresome to append the phrase, viewed as a relation, each
time a record, viewed as a relation, is joined with another relation, let
us agree to speak of joining records with a relation, even though, strictly
speaking, only relations are joined.

Next, the fifth assertion, Prancer is fast, initiates a wave of additions
to the records in the rete and leads to a record in A3’s relation. In general,
an addition to A3’s relation leads to joining the added record with B12’s
relation. This JOIN operation is done with a view toward determining
whether the variable binding expressed in the added record corresponds to
a variable binding already established in B12’s relation.

The result is added to B23’s relation. In this example, the JOIN oper-
ation is over the Y fields, and the JOIN operation produces—after doing a
PROJECT to eliminate one of the redundant Y fields—an initial record for
B23’s relation:

B23| x Y

Comet Prancer

Projecting this new record over the X field yields a possible binding for z
in the rule’s then part:

Parent-Rule Bindings B23| x

Comet

Thus, an addition to A3’s relation has led to joining the added record with
B12’s relation. Symmetrically, of course, any new records added to B12’s
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Assertions

SELECT assertion with Second = is-a and Third = horse

SELECT assertion with Second = is-a-parent-of —

SELECT assertion with Second = is and Third = fast

X
Comet
Prancer

Figure 7.10 Here, the state of the rete is captured just following the additions made in response 1o the fourth
assertion, Comet is-a-parent-of Prancer. The additions are shown shaded.
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relation are joined to A3’s relation. As before, the JOIN operation is done
to determine whether the variable bindings expressed in the added records
correspond to variable bindings already expressed in the other relation
involved in the JOIN operation.

Now consider the state of the rete after you add three more assertions—
Dasher is-a-parent-of Thunder, Thunder is fast, and Thunder is-a horse.
A1’s relation indicates that there are three horses:

Al x

Comet

Prancer
Thunder

A2’s relation indicates that Comet is a parent of two children, and Dasher
is a parent of one child:

A2 x Y
Comet Dasher
Comet Prancer
Dasher Thunder

A3’s relation indicates that Prancer and Thunder are fast:

A3

Y

Prancer

Thunder

Next, the information in the alpha-node relations is joined to form the
beta-node relations:

B12| x Y
Comet Dasher
Comet Prancer

B23| x Y
Comet Prancer
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Next, the ninth assertion, Dasher is-a horse, initiates another wave of ad-
ditions to the records in the rete—the additions indicated by the shading
in figure 7.11.

The first of these additions is the new record in Al’s relation. This new
record is joined to A2’s relation, producing a new record in B12’s relation:

B12 (increment) | ¥ Y
Dasher Thunder

But now this new B12 record is joined to A3’s relation producing a new
record for B23’s relation:

B23 (increment) | x Y
Dasher Thunder

Projection of this new record over the X field yields another possible binding
for z in the rule’s consequent:

Parent-Rule Bindings (increment) B23| x
Dasher

Thus, after all nine assertions are processed, the possible bindings for z in
the rule’s consequent are given by the following relation:

Parent-Rule Bindings B23 | x

Comet
Dasher

As you have seen, adding a new relation produces a wavelike phenomenon
that continues through the rete as long as JOIN operations produce new
records. Note that all the relational operations involve only small rela-
tions containing a few assertions; they never involve the entire accumulated
database of assertions.

Although the example may seem complicated, the procedures for build-
ing and using a rete are straightforward:
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Assertions

SELECT assertion with Second = is-a and Third = horse

SELECT assertion with Second = is-a-parent-of —

SELECT assertion with Second = is and Third = fast

X X Y Y
Comet Comet Dasher Prancer
Prancer Comet Prancer Thunder
Thunder Dasher Thunder
i ﬂdle
X Y
Dasher
Prance
Y

Prancer

Figure 7.11 Here, the state of the rete is captured just following the additions made in response to the ninth
assertion, Dasher is-a horse. The most recent changes are shown shaded.
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To construct a rete,

> For each antecedent pattern that appears in the rule set,
create a SELECT operation that examines new assertions.

> For each rule,
> For each antecedent,

> Create an alpha node and attach it to the correspond-
ing SELECT operation, already created.

> For each alpha node, except the first,
> Create a beta node.

> If the beta node is the first beta node, attach it to the
first and second alpha nodes.

> Otherwise, attach the beta node to the corresponding
alpha node and to the previous beta node.

> Attach a PROJECT operation to the final beta node.

To use a rete,

> For each assertion, filter the assertion through the SELECT
operations, passing the assertion along the rete to the
appropriate alpha nodes.

> For each alpha node receiving an assertion, use the PROJECT
operation to isolate the appropriate variable bindings. Pass
these new bindings, if any, along the rete to the appropri-
ate beta nodes.

> For each beta node receiving new variable bindings on
one of its inputs, use the JOIN operation to create new
variable binding sets. Pass these new variable binding
sets, if any, along the rete to the next beta node or to the
final PROJECT operation.

> For each rule, use the PROJECT operation to isolate the
variable bindings needed to instantiate the consequent.

SUMMARY

m Rule-based systems were developed to take advantage of the fact that a
great deal of useful knowledge can be expressed in simple if-then rules.

m Many rule-based systems are deduction systems. In these systems,
rules consist of antecedents and consequents. In one example, a toy
deduction system identifies animals.
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m  Deduction systems may chain together rules in a forward direction,
from assertions to conclusions, or backward, from hypotheses to ques-
tions. Whether chaining should be forward or backward depends on
the problem.

B Many rule-based systems are reaction systems. In these systems, rules
consist of conditions and actions. A toy reaction system bags groceries.

® Reaction systems require conflict-resolution strategies to determine
which of many triggered rules should be allowed to fire.

® Depth-first search can supply compatible bindings for both forward
chaining and backward chaining.

® Relational operations support breadth-first search for compatible bind-
ings during forward chaining. The rete procedure performs relational
operations incrementally as new assertions flow through a rule-defined
rete.

BACKGROUND

The rete procedure was developed by C. L. Forgy [1982].

MycIN was developed by Edward Shortliffe and colleagues at Stanford
University [1976].

XcoN was developed to configure the Digital Equipment Corporation’s
VAX computers by John McDermott and other researchers working at
Carnegie Mellon University, and by Arnold Kraft, Dennis O’Connor, and
other developers at the Digital Equipment Corporation [McDermott 1982].





