Nets and
Optimal Search

In this chapter, you learn how to deal with search situations in which
the cost of traversing a path is of primary importance. In particular, you
learn about the British Museum procedure, branch and bound, discrete dy-
namic programming, and A*. All but the British Museum procedure aspire
to do their work efficiently.

By way of illustration, you see how it is possible to find the shortest
route from one city to another using an ordinary highway map, and you
see how a robot-planning system can find the most efficient way to move
an object using configuration space.

Once you have finished this chapter, you will know what to do when
you do not care as much about how long it takes to find a path as you do
about finding the best path.

THE BEST PATH

In this section, you learn more about the map-traversal problem that
emerged in Chapter 4; here, however, you pay attention to path length.
The British Museum Procedure Looks Everywhere

One procedure for finding the shortest path through a net is to find all pos-
sible paths and to select the best one from them. This plodding procedure,
named in jest, is known as the British Museum procedure.

81

82

Chapter

5 Nets and Optimal Search

If you wish to find all possible paths, either a depth-first search or
a breadth-first search will work, with one modification: Search continues
until every solution is found. If the breadth and depth of the tree are small,
as in the map-traversal example, then there are no problems.

Unfortunately, the size of search trees is often large, making any pro-
cedure for finding all possible paths extremely unpalatable. Suppose that,
instead of the number of levels being small, it is moderately large. Suppose
further that the branching is completely uniform and that the number of
alternative branches at each node is b. Then, in the first level, there will
be b nodes. For each of these b nodes, there will be b more nodes in the
second level, or b2. Continuing this analysis leads to the conclusion that
the number of nodes at depth d must be b¢. For even modest breadth and
depth, the number of paths can be large: b = 10 and d = 10 yields 10
billion paths. Fortunately, there are strategies that enable optimal paths
to be found without all possible paths being found first.

Branch-and-Bound Search Expands the Least-Cost Partial Path

One way to find optimal paths with less work is to use branch-and-bound
search. The basic idea is simple. Suppose an optimal solution is desired
for the highway map shown Chapter 4. Also suppose that an oracle has told
you that S-D-E-F-G is the optimal solution. Being a scientist, however,
you do not trust oracles.

Nevertheless, knowing that the length of S-D-E-F-G is 13, you can
eliminate some work that you might otherwise do. For example, as shown
in figure 5.1, there is no need to consider paths that start with S-D-A-B,
because their length has to be at least 13, given that the length of S-D-A-B
is already 13.

More generally, the branch-and-bound scheme always keeps track of
all partial paths contending for further consideration. The shortest one
is extended one level, creating as many new partial paths as there are
branches. Next, these new paths are considered, along with the remaining
old ones: again, the shortest is extended. This process repeats until the
goal is reached along some path. Because the shortest path was always the
one chosen for extension, the path first reaching the goal is likely to be the
optimal path.

To turn likely into certain, you have to extend all partial paths until
they are as long as or longer than the complete path. The reason is that
the last step in reaching the goal may be long enough to make the supposed
solution longer than one or more partial paths. It might be that only a
tiny step would extend one of the partial paths to the solution point. To
be sure that this is not so, instead of terminating when a path is found,
you terminate when the shortest partial path is longer than the shortest
complete path.

Here, then, is the procedure; it differs from the basic search procedures
you learned about in Chapter 4 only in the steps shown in italic type:

Branch-and-Bound Search Expands the Least-Cost Partial Path

83

Figure 5.1 The length of the
complete path from S to G,
S-D-E-F-G is 13. Similarly,
the length of the partial path
S-D~-A-B also is 13 and any
additional movement along a
branch will make it longer than
13. Accordingly, there is no
need to pursue S—-D-A-B any
further because any complete
path starting with S—-D—A-B has
to be longer than a complete
path already known. Only the
other paths emerging from

S and from S-D-E have to

be considered, as they may

provide a shorter path.
L]

To conduct a branch-and-bound search,

> Form a one-element queue consisting of a zero-length path
that contains only the root node.

> Until the first path in the queue terminates at the goal
node or the queue is empty,

> Remove the first path from the queue; create new paths
by extending the first path to all the neighbors of the
terminal node.

> Reject all new paths with loops.
> Add the remaining new paths, if any, to the queue.
> Sort the entire queue by path length with least-cost paths

> If the goal node is found, announce success; otherwise,
announce failure.

Now look again at the map-traversal problem, and note how branch-and-
bound works when started with no partial paths. Figure 5.2 illustrates the
exploration sequence. In the first step, the partial-path distance of S-A
is found to be 3, and that of S-D is found to be 4; partial path S-A is

84

Chapter

5 Nets and Optimal Search

therefore selected for expansion. Next, S—A-B and S—A-D are generated
from S—A with partial path distances of 7 and 8.

Now S-D, with a partial path distance of 4, is expanded, leading to
partial paths to S-D-A and S-D-E. At this point, there are four partial
paths, with the path S—-D-E being the shortest.

After the seventh step, partial paths S—A-D-E and S-D-E-F are the
shortest partial paths. Expanding S-A-D-E leads to partial paths termi-
nating at B and F. Expanding S-D-E-F, along the right side of the tree,
leads to the complete path S—-D-E-F-G, with a total distance of 13. This
path is the shortest one, but if you wish to be absolutely sure, you must
extend two partial paths: S—A-B-E, with a partial-path distance of 12,
and S-D-E-B, with a partial-path distance of 11. There is no need to ex-
tend the partial path S-D—A-B, because its partial-path distance of 13 is
equal to that of the complete path. In this particular example, little work
is avoided relative to exhaustive search, British Museum style.

Adding Underestimates Improves Efficiency

In some cases, you can improve branch-and-bound search greatly by using
guesses about distances remaining, as well as facts about distances already
accumulated. After all, if a guess about distance remaining is good, then
that guessed distance added to the definitely known distance already tra-
versed should be a good estimate of total path length, e(total path length):

e(total path length) = d(already traveled) + e(distance remaining),

where d(already traveled) is the known distance already traveled, and where
e(distance remaining) is an estimate of the distance remaining.

Surely it makes sense to work hardest on developing the path with
the shortest estimated path length until the estimate is revised upward
enough to make some other path be the one with the shortest estimated
path length. After all, if the guesses were perfect, this approach would keep
you on the optimal path at all times.

In general, however, guesses are not perfect, and a bad overestimate
somewhere along the true optimal path may cause you to wander away
from that optimal path permanently.

Note, however, that underestimates cannot cause the right path to be
overlooked. An underestimate of the distance remaining yields an under-
estimate of total path length, u(total path length):

u(total path length) = d(already traveled) + u(distance remaining),
where d(already traveled) is the known distance already traveled, and where
u(distance remaining) is an underestimate of the distance remaining.

Now, if you find a total path by extending the path with the smallest
underestimate repeatedly, you need to do no further work once all partial-
path distance estimates are longer than the best complete path distance so
far encountered. You can stop because the real distance along a complete
path cannot be less than an underestimate of that distance. If all estimates

Adding Underestimates Improves Efficiency 85

Figure 5.2 Branch-and-bound
search determines that path e
S—D-E-F-G is optimal. The

numbers beside the nodes are
accumulated distances. Search
stops when all partial paths to
open nodes are as long as or
longer than the complete path
S-D-E-F-G.

86 Chapter 5 Nets and Optimal Search

Figure 5.2 Continued.
S

Adding Underestimates Improves Efficiency 87

Figure 5.2 Continued.
-}

Chapter

5 Nets and Optimal Search

of remaining distance can be guaranteed to be underestimates, you cannot
blunder.

When you are working out a path on a highway map, straight-line dis-
tance is guaranteed to be an underestimate. Figure 5.3 shows how straight-
line distance helps to make the search efficient. As before, A and D are
generated from S. This time, D is the node from which to search, because
D’s underestimated path length is 12.9, which is shorter than that for A,
13.4.

Expanding D leads to partial path S-D-A, with an underestimated
path length of 19.4, and to partial path S-D-E, with a underestimated
path length of 12.9. S-D-E is therefore the partial path to extend. The
result is one path to B with a distance estimate of 17.7, and another path
to F with a distance estimate of 13.0.

Expanding the partial path to F is the correct move, because it is the
partial path with the minimum underestimated path length. This expan-
sion leads to a complete path, S-D-E-F-G, with a total distance of 13.0.
No partial path has a lower-bound distance so low, so no further search is
required.

In this particular example, a great deal of work is avoided. Here is the
modified procedure, with the modification in italic:

To conduct a branch-and-bound search with a lower-bound
estimate,

> Form a one-element queue consisting of a zero-length path
that contains only the root node.

> Until the first path in the queue terminates at the goal
node or the queue is empty,

> Remove the first path from the queue; create new paths
by extending the first path to all the neighbors of the
terminal node.

> Reject all new paths with loops.

> Add the remaining new paths, if any, to the queue.

> Sort the entire queue by the sum of the path length
and a lower-bound estimate of the cost remaining, with
least-cost paths in front.

> If the goal node is found, announce success; otherwise,
announce failure.

Of course, the closer an underestimate is to the true distance, the more
efficiently you search, because, if there is no difference at all, there is no
chance of developing any false movement. At the other extreme, an un-
derestimate may be so poor as to be hardly better than a guess of zero,

Adding Underestimates Improves Efficiency

89

Figure 5.3 Branch-and-
bound search augmented by
underestimates determines
that the path S-D-E-F-G is
optimal. The numbers beside
the nodes are accumulated
distances plus underestimates
of distances remaining.
Underestimates quickly push
up the lengths associated
with bad paths. In this
example, many fewer nodes
are expanded than would be
expanded with branch-and-
bound search operating without
underestimates.

90 Chapter 5 Nets and Optimal Search

Figure 5.4 An illustration

of the dynamic-programming
principle. The numbers beside
the nodes are accumulated
distances. There is no point

in expanding the instance of
node D at the end of S-A-D,
because getting to the goal via
the instance of D at the end of

S-D is obviously more efficient.
T

which certainly must always be the ultimate underestimate of remaining
distance. In fact, ignoring estimates of remaining distance altogether can
be viewed as the special case in which the underestimate used is uniformly
Z€T0.

REDUNDANT PATHS

In this section, you learn still more about the map-traversal problem that
emerged in Chapter 4, but now you look at it with a view toward weeding
out redundant partial paths that destroy search efficiency. In the end, you
learn how to bring together several distinct ideas to form the A* procedure,
and you see how A* can be put to work on a robot planning problem.

Redundant Partial Paths Should Be Discarded

Now let us consider another way to improve on basic branch-and-bound
search. Look at figure 5.4. The root node, S, has been expanded, producing
partial paths S-A and S-D. For the moment, let us use no underestimates
for remaining path length.

Because S—A is shorter than S-D, S-A is extended first, leaving three
paths: S-A-B, S-A-D, and S-D. Then, S-D will be extended, because it
is the partial path with the shortest length.

But what about the path S—A-D? Will it ever make sense to extend
it? Clearly, it will not. Because there is one path to D with length 4, it
cannot make sense to work with another path to D with length 8. The
path S—A-D should be forgotten forever; it cannot produce a winner.

This example illustrates a general principle. Assume that the path from
a starting point, S, to an intermediate point, I, does not influence the choice
of paths for traveling from I to a goal point, G. Then the minimum distance

Redundant Partial Paths Should Be Discarded 91

from S to G through I is the sum of the minimum distance from S to I and
the minimum distance from I to G. Consequently, the strangely named
dynamic-programming principle holds that, when you look for the
best path from S to G, you can ignore all paths from S to any intermediate
node, I, other than the minimum-length path from S to L:

The dynamic-programming principle:

> The best way through a particular, intermediate place is
the best way to it from the starting place, followed by the
best way from it to the goal. There is no need to look at
any other paths to or from the intermediate place.

The branch-and-bound procedure, with dynamic programming included, is
as follows:

To conduct a branch-and-bound search with dynamic pro-
gramming,

> Form a one-element queue consisting of a zero-length path
that contains only the root node.

> Until the first path in the queue terminates at the goal
node or the queue is empty,

> Remove the first path from the queue; create new paths
by extending the first path to all the neighbors of the
terminal node.

> Reject all new paths with loops.
> Add the remaining new paths, if any, to the queue.

> If two or more paths reach a common node, delete all
those paths except the one that reaches the common
node with the minimum cost.

> Sort the entire queue by path length with least-cost
paths in front.

> If the goal node is found, announce success; otherwise,
announce failure.

Figure 5.5 shows the effect of using the dynamic-programming principle, to-
gether with branch-and-bound search, on the map-traversal problem. Four
paths are cut off quickly, leaving only the dead-end path to node C and
the optimal path, S-D-E-F-G.

92 Chapter 5 Nets and Optimal Search

Figure 5.5 Branch-and-bound
search, augmented by dynamic
programming, determines e
that path S-D-E-F-G is

optimal. The numbers beside
the nodes are accumulated
path distances. Many paths, ° °
those shown terminated with
underbars, are found to be
redundant. Thus, dynamic
programming reduces the

number of nodes expanded.
]

Redundant Partial Paths Should Be Discarded 93

Figure 5.5 Continued.
]

94

Chapter

5 Nets and Optimal Search

Underestimates and Dynamic Programming
Improve Branch-and-Bound Search

The A* procedure is branch-and-bound search, with an estimate of re-
maining distance, combined with the dynamic-programming principle. If
the estimate of remaining distance is a lower-bound on the actual distance,
then A* produces optimal solutions. Generally, the estimate may be as-
sumed to be a lower bound estimate, unless specifically stated otherwise,
implying that A*’s solutions are normally optimal. Note the similarity

between A* and branch-and-bound search with dynamic programming;:

To conduct A* search,

> Form a one-element queue consisting of a zero-length path
that contains only the root node.

> Until the first path in the queue terminates at the goal
node or the queue is empty,

> Remove the first path from the queue; create new paths
by extending the first path to all the neighbors of the
terminal node.

> Reject all new paths with loops.

> If two or more paths reach a common node, delete all
those paths except the one that reaches the common
node with the minimum cost.

> Sort the entire queue by the sum of the path length
and a lower-bound estimate of the cost remaining, with
least-cost paths in front.

> If the goal node is found, announce success; otherwise,
announce failure.

Several Search Procedures Find the Optimal Path

You have seen that there are many ways to search for optimal paths, each

of which has advantages:

a The British Museum procedure is good only when the search tree is

small.

m Branch-and-bound search is good when the tree is big and bad paths

turn distinctly bad quickly.

m Branch-and-bound search with a guess is good when there is a good

lower-bound estimate of the distance remaining to the goal.

m Dynamic programming is good when many paths converge on the same

place.

m The A* procedure is good when both branch-and-bound search with a

guess and dynamic programming are good.

Robot Path Planning Illustrates Search 95

Figure 5.6 An obstacle-
avoidance problem. The Initial position

problem is to move the small
triangular robot to a new A
position, shown dotted, without

Desired position

N

Robot Path Planning lllustrates Search

To see how the A* search procedure can be put to use, consider the collision-
avoidance problem faced by robots. Before a robot begins to move in a
cluttered environment, it must compute a collision-free path between where
it is and where it wants to be. This requirement holds for locomotion of the
whole robot through a cluttered environment and for robot hand motion
through a component-filled workspace.

Figure 5.6 illustrates this motion-planning problem in a simple world
inhabited by a triangular robot. The robot wants to move, without turning,
from its initial position to the new position indicated by the dashed-line
triangle. The question is, Can the robot make it through the gap between
the pentagon and the octagon?

In two dimensions, a clever trick makes the problem easy. The general
idea is to redescribe the problem in another, simpler representation, to
solve the simpler problem, and to redescribe the solution in the original
representation. Overall, taking this approach is like doing multiplication
by moving back and forth between numbers and their logarithms or like

96 Chapter 5 Nets and Optimal Search

Figure 5.7 The configuration-
space transformation. The
heavy line shows the locus of
the small triangle’s lower-left 6 5
corner as the small triangle
is moved around the big one.
Numbered positions are the

starting points for each straight-

line run. Keeping the lower-left 7 4
corner away from the heavy line

keeps the small triangle away
from the pentagon. \L 'T
e
8 3
\ 1 —_—> 2 1

analyzing linear systems by moving back and forth between signals and
their Fourier transforms.

For obstacle avoidance, the original representation involves a moving
object and stationary obstacles, and the new representation involves a mov-
ing point and larger, virtual obstacles called configuration-space obsta-
cles.

Figure 5.7 shows how you can transform an ordinary obstacle into a
configuration-space obstacle using the object to be moved and the obstacle
to be avoided. Basically, you slide the object around the obstacle, main-
taining contact between them at all times, keeping track of one arbitrary
tracing point on the moving object as you go. As the tracing point moves
around the obstacle, it builds an eight-sided fence. Plainly, there can be
no collision between object and obstacle as long as the tracing point stays
outside the fence that bounds the configuration-space obstacle associated
with the original obstacle.

Figure 5.8 shows both of the configuration-space obstacles made from
the original triangle and the pentagon and octagon shown in figure 5.6. The
lower-left vertex of the triangular robot was used. Evidently, the robot can
get through the gap, because the configuration-space obstacles are not large
enough to close up the space.

It is not entirely clear that the shortest path is through the gap, how-
ever. To be sure that it is, you have to search.

Robot Path Planning Illustrates Search 97

O
///

As yet, there is no net through which to search. The construction of
a net is easy, however, for two-dimensional configuration-space problems.
To see why it is easy, suppose that you are at any point in a configuration
space. From where you are, you either can see the desired position or you
cannot see it. If you can, you need to think no more, for the shortest path
is the straight line between you and the desired position.

If you cannot see the desired position from where you are, then the
only move that makes sense is a move to one of the vertexes that you can
see. Accordingly, all motion is confined to motion from vertex to vertex,
except at the beginning, when motion is from initial position to a vertex,
and at the end, when motion is from a vertex to the desired position. Thus,
the initial position, desired position, and vertexes are like the nodes in a
net. Because the links between nodes are placed only when there is an

Figure 5.8 The configuration

space for the problem shown in
figure 5.6. No collision occurs Initial position
if the point is kept out of the

shaded area.
. |

P

N

AN

Desired position

98 Chapter 5 Nets and Optimal Search

Figure 5.9 In a two-
dimensional configuration
space, the point robot moves
along the straight lines of a
visibility graph. An A* search
through the visibility graph
produces the shortest path
from the initial position to the
desired position. The heavy

arrow shows the shortest path.
A

Initial position

Desired position

unobstructed line of sight between the nodes, the net is call a visibility
graph.

Figure 5.9 illustrates the visibility graph for the robot-motion example,
along with the result of performing an A* search to establish the short-
est path for the configuration-space robot, a point, through the space of
configuration-space obstacles, all oddly shaped. Figure 5.10 shows motion
of the actual robot, along with the actual obstacles it circumnavigates, all
superimposed on the solution in configuration space.

If you allow the moving object to rotate, you can make several config-
uration spaces corresponding to various degrees of rotation for the moving
object. Then, the search involves motion not only through individual con-
figuration spaces, but also from space to space.

Still more generally, when you need to move an arm, holding an object,
in three dimensions, rather than just two, the construction of a suitable con-

Summary 99

Figure 5.10 The robot's
movement is dictated by the
shortest path found in the
visibility graph. The lower-

left corner of the triangular
robot—the one used to produce
configuration-space obstacles—
is moved along the shortest
path. Note that the triangular
robot never collides with either

the pentagon or the octagon.
L]

Initial position

Desired position

figuration space is extremely complicated mathematically. Complication-
loving mathematicians have produced a flood of literature on the subject.

SUMMARY

The British Museum procedure is one of many search procedures ori-
ented toward finding the shortest path between two points. The British
Museum procedure relies on working out all possible paths.
Branch-and-bound search usually saves a lot of time relative to the
British Museum procedure. It works by extending the least-cost partial
path until that path reaches the goal.

Adding underestimates to branch-and-bound search improves efficiency.
Deleting redundant partial paths, a form of dynamic programming,
also improves efficiency. Adding underestimates and deleting redun-
dant partial paths converts branch-and-bound search into A* search.

100 Chapter 5 Nets and Optimal Search

m The configuration-space transformation turns object-obstacle problems
into point-obstacle problems. So transformed, robot path-planning
problems succumb to A* search.

BACKGROUND

Optimal search methods are discussed in great detail in many books on
algorithms. In particular, see the textbook, Introduction to Algorithms, by
Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest [1990] for
an excellent treatment.

The discussion of configuration space is based on the work of Tomas
Lozano-Pérez [1980].

