Generate and Test
Means-Ends Analysis
and Problem Reduction

In this chapter, you learn about three powerful problem-solving meth-
ods: generate and test, means—ends analysis, and problem reduction. You
also learn about two new representations, both of which can be viewed
as special cases of the semantic-net representation introduced in Chap-
ter 2. One is the state-space representation, introduced in the discussion
of means-ends analysis, and another is the goal tree, introduced in the
discussion of problem reduction.

By way of illustration, you see how a program can find the combination
to a safe, plan a route from one city to another, and solve motion-planning
problems in a world populated by a child’s blocks.

Once you have finished this chapter, you will be able to identify and
deploy three more problem-solving methods and two more representations,
thus adding considerably to your personal representation and method col-
lections. You will also begin to see that you yourself use similar represen-
tations and methods daily as you solve problems.

THE GENERATE-AND-TEST METHOD

Problem solvers adhering to the generate-and-test paradigm use two
basic modules, as illustrated in figure 3.1. One module, the generator,

47

48 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

Figure 3.1 The generate-
and-test method involves a
generator and a tester.

L] Generator

Possible Correct
solutions ﬂ‘ solution
ONONONONONONONG O

O
O
Incorrect

O «—— |
5 / solutions

enumerates possible solutions. The second, the tester, evaluates each pro-
posed solution, either accepting or rejecting that solution.

The generator may generate all possible solutions before the tester
takes over; more commonly, however, generation and testing are interdig-
itated. Action may stop when one acceptable solution is found, or action
may continue until some satisfactory number of solutions is found, or action
may continue until all possible solutions are found. Here is the interdigi-
tated, stop-when-acceptable version in procedural English:

To perform generate and test,

> Until a satisfactory solution is found or no more candidate
solutions can be generated,

> Generate a candidate solution.
> Test the candidate solution.

> If an acceptable solution is found, announce it; otherwise,
announce failure.

In the rest of this section, you learn more about the generate-and-test
method, you learn which sort of problems the generate-and-test method
solves, and you learn several criteria that good generators always satisfy.

Generate-and-Test Systems Often Do Identification

The generate-and-test paradigm is used most frequently to solve identifica-
tion problems. In identification problems, the generator is said to produce
hypotheses.

Good Generators Are Complete, Nonredundant, and Informed 49

Figure 3.2 Burgling a safe
using the generate-and-test
paradigm. The generator

is the procedure that the
burglar uses to select and dial
combinations. The tester is the
procedure that the burglar uses
to work the handle. Careful
safecrackers make sure that
they try all possibilities, without
any repeats, until a twist of the

handle opens the safe.
.|

S\‘ "",ﬁ]
/> i

To use the generate-and-test paradigm to identify, say, a tree, you can

reach for a tree book, then thumb through it page by page, stopping when
you find a picture that looks like the tree to be identified. Thumbing
through the book is the generation procedure; matching the pictures to
the tree is the testing procedure.

To use generate and test to burgle a three-number, two-digit safe, you
can start with the combination 00-00-00, move to 00-00-01, and continue
on through all possible combinations until the door opens. Of course, the
counting is the generation procedure, and the twist of the safe handle is
the testing procedure.

The burglar in figure 3.2 may take some time to crack the safe with
this approach, however, for there are 100 = 1 million combinations. At
three per minute, figuring that he will have to go through half of the com-
binations, on average, to succeed, the job will take about 16 weeks, if he
works 24 hours per day.

Good Generators Are Complete, Nonredundant, and Informed

It is obvious that good generators have three properties:

m Good generators are complete: They eventually produce all possible
solutions.

@ Good generators are nonredundant: They never compromise efficiency
by proposing the same solution twice.

® Good generators are informed: They use possibility-limiting informa-
tion, restricting the solutions that they propose accordingly.

Informability is important, because otherwise there are often too many
solutions to go through. Consider the tree-identification example. If it is

50

Chapter

3 Generate and Test, Means-Ends Analysis, and Problem Reduction

winter and a tree you are trying to identify is bare, you do not bother going
through a tree book’s conifer section.

Similarly, if a burglar knows, somehow, that all of the numbers in a
safe combination are prime numbers in the range from 0 to 99, then he can
confine himself to 253 = 15625 numbers, getting the safe open in less than
2 days, on the average, instead of in 16 weeks.

THE MEANS-ENDS ANALYSIS METHOD

The state of a system is a description that is sufficient to determine the
future. In a state space, each node denotes a state, and each link denotes
a possible one-step transition from one state to another state:

A state space is a representation

That is a semantic net

In which

> The nodes denote states.

> The links denote transitions between states.

Thus, a state space is a member of the semantic-net family of representa-
tions introduced in Chapter 2.

In the context of problem solving, states correspond to where you are
or might be in the process of solving a problem. Hence, the current state
corresponds to where you are, the goal state corresponds to where you
want to be, and the problem is to find a sequence of transitions that leads
from the initial state to the goal state.

In the rest of this section, you learn about means—ends analysis, a
standard method for selecting transitions. You also learn about one popular
way to implement means—ends analysis using a simple table.

The Key Idea in Means-Ends Analysis Is to Reduce Differences

The purpose of means—ends analysis is to identify a procedure that
causes a transition from the current state to the goal state, or at least to
an intermediate state that is closer to the goal state. Thus, the identified
procedure reduces the observed difference between the current state and
the goal state.

Consider the states shown in figure 3.3. Solid-line nodes identify the
current state and the goal state. Dotted-line nodes correspond to states
that are not yet known to exist. Descriptions of the current state, or of the
goal state, or of the difference between those states, may contribute to the
identification of a difference-reducing procedure.

In figure 3.4, a sequence of procedures P1,...,P5 cause transitions
from state to state, starting from the initial current state. Each of the

DENDRAL Analyzes Mass Spectrograms

DENDRAL is one of the great classic application programs. To see what it does,
suppose that an organic chemist wants to know the chemical nature of some sub-
stance newly created in the test tube. The first step, not the one of concern here,
is to determine the number of atoms of various kinds in one molecule of the stuff.
This step determines the chemical formula, such as CgH160. The notation indicates
that each molecule has eight atoms of carbon, 16 of hydrogen, and one of oxygen.

Once a sample’s chemical formula is known, the chemist may use the sample’s
mass spectrogram to work out the way the atoms are arranged in the chemical’s
structure, thus identifying the isomer of the chemical.

The spectrogram machine bombards a sample with high energy electrons, caus-
ing the molecules to break up into charged chunks of various sizes. Then, the
machine sorts the chunks by passing them through a magnetic field that deflects the
high-charge, low-weight ones more than it does the low-charge, high-weight ones.
The deflected chunks are collected, forming a spectrogram like the following:

Relative
frequency

i, il 1| ‘ |
[

T I I I T I I

40 80 120

Mass/charge

The purpose of DENDRAL is to work, like a knowledgeable chemist, from a
chemical formula and spectrogram to a deduced structure, producing a chemical
structure like this:

CHz — CH; — C — CH; — CHy — CH; — CHy — CHg

I
o}

The DENDRAL program works out structures from chemical formulas and mass
spectrograms using the generate-and-test method. The generator consists of a struc-
ture enumerator and a synthesizer that produces a synthetic mass spectrogram by
simulating the action of a real mass spectrometer on each enumerated structure.

The structure enumerator ensures that the overall generator is complete and
nonredundant because the structure enumerator uses a provably complete and nonre-
dundant structure-enumeration procedure. The overall generator is also informed,
because the structure enumerator uses the chemical formula and knowledge about
necessary and forbidden substructures.

The tester compares the real mass spectrogram with those produced by the
generator. The possible structures are those whose synthetic spectrograms match
the real one adequately. The structure judged correct is the one whose synthetic
spectrogram most closely matches the real one.

52 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

Figure 3.3 Means—ends
analysis involves states and
procedures for reducing
differences between states. The
current state and goal state are
shown solid; other states, not
yet encountered, are shown
dotted.

Current state

)

Goal state

@

Figure 3.4 Means—ends
analysis produces a path
through state space. The
current state, the goal state,
and a description of their
difference determine which
procedure to try next. Note that
the procedures are expected,
but not guaranteed, to cause

a transition to a state that is
nearer the goal state than is the

current state.
R

procedures is selected because it is believed to be relevant to reducing the
difference between the state in which it was applied and the goal state.
Note, however, that procedure P3 takes the problem solver farther away
from the goal; there is no built-in mechanism preventing backward steps in
the most general form of means—ends analysis. Fortunately, procedure P4

Initial state

P1
Current state K

o

PS5

Goal state

Difference

and procedure P5 take the problem solver back toward the goal.

cisely, in procedural English:

In summary, here is the means—ends procedure expressed, more pre-

The Problem-Reduction Method 53

To perform means—ends analysis,

> Until the goal is reached or no more procedures are avail-
able,
> Describe the current state, the goal state, and the dif-
ference between the two.
> Use the difference between the current state and goal
state, possibly with the description of the current state
or goal state, to select a promising procedure.

> Use the promising procedure and update the current
state.

> If the goal is reached, announce success; otherwise, an-
nounce failure.

Difference-Procedure Tables Often Determine the Means

Whenever the description of the difference between the current state and
the goal state is the key to which procedure to try next, a simple difference-
procedure table may suffice to connect difference descriptions to pre-
ferred procedures.t

Consider, for example, a travel situation in which the problem is to
find a way to get from one city to another. One traveler’s preferences
might link the preferred transportation procedure to the difference between
states, described in terms of the distance between the cities involved, via
the following difference-procedure table:

Distance Airplane Train Car
More than 300 miles Vv

Between 100 and 300 miles Vv

Less than 100 miles Vv

Thus, the difference-procedure table determines generally what to do, leav-
ing descriptions of the current state and destination state with no purpose
other than to specify the origin and destination for the appropriate proce-
dure.

THE PROBLEM-REDUCTION METHOD

Sometimes, it is possible to convert difficult goals into one or more easier-
to-achieve subgoals. Each subgoal, in turn, may be divided still more finely
into one or more lower-level subgoals.

tBecause transition-causing procedures are often called operators, a difference-
procedure table is called a difference-operator table in some circles.

54 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

Figure 3.5 MOVER is a
procedure for planning motion

sequences in the world of I
bricks, pyramids, balls, and a
robot hand.

When using the problem-reduction method, you generally recog-
nize goals and convert them into appropriate subgoals. When so used,
problem reduction is often called, equivalently, goal reduction.

In the rest of this section, you learn more about the problem-reduction
method, you learn which problems the problem-reduction method solves,
and you learn how the problem-reduction method makes it easy to answer
certain “why?” and “how?” questions.

Moving Blocks lllustrates Problem Reduction

The MOVER procedure solves problems in block manipulation and answers
questions about its own behavior. MOVER works with blocks such as the
one shown in figure 3.5, obeying commands such as the following:

Put <block name> on <another block name>.

To obey, MOVER plans a motion sequence for a one-handed robot that
picks up only one block at a time. MOVER consists of procedures that
reduce given problems to simpler problems, thus engaging in what is called
problem reduction. Conveniently, the names of these procedures are
mnemonics for the problems that the procedures reduce. Figure 3.6 shows
how the procedures fit together.

m PUT-ON arranges to place one block on top of another block. It works by
activating other procedures that find a specific place on the top of the
target block, grasping the traveling block, moving it, and ungrasping
it at the specific place.

W GET-SPACE finds space on the top of a target block for a traveling block.

B MAKE-SPACE helps GET-SPACE, when necessary, by moving obstruc-
tions until there is enough room for a traveling block.

B GRASP grasps blocks. If the robot hand is holding a block when GRASP
is invoked, GRASP must arrange for the robot hand to get rid of that

Moving Blocks Illustrates Problem Reduction 55

Figure 3.6 Specialists for

moving blocks. PUT-ON <
]

L—) GET-SPACE —>» MAKE-SPACE —

GRASP ——> CLEAR-TOP

v

GET-RID-OF€——

——> MOVE ‘

—— > UNGRASP

block. Also, GRASP must arrange to clear off the top of the object to
be grasped.

B CLEAR-TOP does the top clearing. It works by getting rid of everything
on top of the object to be grasped.

B GET-RID-OF gets rid of an obstructing object by putting it on the table.

® UNGRASP makes the robot’s hand let go of whatever it is holding.

@ MOVE moves objects, once they are held, by moving the robot hand.

Now imagine that there is a request to put block A on block B, given the
situation shown in figure 3.5. Plainly, the following sequence suffices:

Grasp D.

Move D to some location on the table.
Ungrasp D.

Grasp C.

Move C to some location on the table.
Ungrasp C.

Grasp A.

Move A to some location on B.
Ungrasp A.

The question is, How do the procedures in MOVER find the appropriate
sequence? Here is the answer:

First, PUT-ON asks GET-SPACE to identify a place for block A on top
of block B. GET-SPACE appeals to MAKE-SPACE because block D is in the
way.

56 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

Figure 3.7 A goal tree.

Branches connect supergoals

to simpler subgoals.

—_— @

Hard problem

O O O

Simpler problem Simpler problem Simpler problem

MAKE-SPACE asks GET-RID-OF to help by getting rid of block D. GET-
RID-OF obliges by finding a place for block D on the table and by moving
block D to that place using PUT-ON.

Note that PUT-ON, at work placing block A on block B, eventually
produces a new job for PUT-ON itself, this time to put block D on the
table. When a procedure uses itself, the procedure is said to recurse.
Systems in which procedures use themselves are said to be recursive.

With block D gone, MAKE-SPACE can find a place for block A to go
on top of block B. Recall that MAKE-SPACE was asked to do this by GET-
SPACE because PUT-ON has the duty of putting block A on B. PUT-ON can
proceed now, asking GRASP to grasp block A. But GRASP realizes that it
cannot grasp block A because block C is in the way. GRASP asks CLEAR-
TOP for help. CLEAR-TOP, in turn, asks GET-RID-OF for help, whereupon
GET-RID-OF arranges for block C to go on the table using PUT-ON.

With block A cleared, CLEAR-TOP is finished. But if there were many
blocks on top of block A, rather than just one, CLEAR-TOP would appeal
to GET-RID-OF many times, rather than just once.

Now GRASP can do its job, and PUT-ON can ask MOVE to move block
A to the place found previously on top of block B. Finally, PUT-ON asks
UNGRASP to let block A go.

The Key Idea in Problem Reduction Is to Explore a Goal Tree

A semantic tree is a semantic net with special links, called branches,
each of which connects two nodes:

Goal Trees Can Make Procedure Interaction Transparent 57

A semantic tree is a representation
That is a semantic net
In which

> Certain links are called branches. Each branch connects
two nodes; the head node is called the parent node and
the tail node is called the child node

> One node has no parent; it is called the root node. Other
nodes have exactly one parent.

> Some nodes have no children; they are called leaf nodes.

> When two nodes are connected to each other by a chain
of two or more branches, one is said to be the ancestor;
the other is said to be the descendant.

With constructors that

> Connect a parent node to a child node with a branch link
With readers that

> Produce a list of a given node’s children

> Produce a given node’s parent

A goal tree, like the one shown in figure 3.7, is a semantic tree in which
nodes represent goals and branches indicate how you can achieve goals
by solving one or more subgoals. Each node’s children correspond to
immediate subgoals; each node’s parent corresponds to the immediate
supergoal. The top node, the one with no parent, is the root goal.

Goal Trees Can Make Procedure Interaction Transparent

A goal tree, such as the one in figure 3.8, makes complicated MOVER sce-
narios transparent. Clearing the top of block A is shown as an immediate
subgoal of grasping block A. Clearing the top of block A is also a subgoal
of putting block A at a place on top of block B, but it is not an immediate
subgoal.

All the goals shown in the example are satisfied only when all of their
immediate subgoals are satisfied. Goals that are satisfied only when all
of their immediate subgoals are satisfied are called And goals. The corre-
sponding nodes are called And nodes, and you mark them by placing arcs
on their branches.

Most goal trees also contain Or goals; these goals are satisfied when any
of their immediate subgoals are satisfied. The corresponding, unmarked
nodes are called Or nodes.

Finally, some goals are satisfied directly, without reference to any sub-
goals. These goals are called leaf goals, and the corresponding nodes are
called leaf nodes.

58 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

Because goal trees always involve And nodes, or Or nodes, or both,
they are often called And—Or trees.

To determine whether a goal has been achieved, you need a testing
procedure. The key procedure, REDUCE, channels action into the REDUCE-
AND and the REDUCE-OR procedures:

To determine, using REDUCE, whether a goal is achieved,

> Determine whether the goal is satisfied without recourse
to subgoals:

> If it is, announce that the goal is satisfied.

> Otherwise, determine whether the goal corresponds to
an And goal:

> If it does, use the REDUCE-AND procedure to deter-
mine whether the goal is satisfied.

> Otherwise, use the REDUCE-OR procedure to deter-
mine whether the goal is satisfied.

REDUCE uses two subprocedures: one deals with And goals, and the other
deals with Or goals:

To determine, using REDUCE-AND, whether a goal has been
satisfied,

> Use REDUCE on each immediate subgoal until there are
no more subgoals, or until REDUCE finds a subgoal that is
not satisfied.

> If REDUCE has found a subgoal that is not satisfied, an-
nounce that the goal is not satisfied; otherwise, announce
that the goal is satisfied.

To determine, using REDUCE-OR, whether a goal has been
satisfied,

> Use REDUCE on each subgoal until REDUCE finds a subgoal
that is satisfied.

> If REDUCE has found a subgoal that is satisfied, announce
that the goal is satisfied; otherwise, announce that the
goal is not satisfied.

With REDUCE, REDUCE-AND, and REDUCE-OR in hand, it is a simple matter
to test an entire And-Or tree: you just use REDUCE on the root node,

Goal Trees Enable Introspective Question Answering 59

PUT-ONAB
GET-SPACEAB GRASP A MOVEAB UNGRASP A
MAKE-SPACE AB CLEAR-TOP A
GET-RID-OF D GET-RID-OF C
PUT-ON D Table PUT-ON C Table
GET-SPACE D Table GET-SPACE C Table
GRASP D GRASP C
MOVE D Table MOVE C Table

A\ A

UNGRASP D UNGRASP C

Figure 3.8 A goal

tree. Branches joined
by arcs are under And
nodes; other branches

are under Or nodes.
]

permitting the various procedures to call one another, as necessary, to
work their way down the tree.

Goal Trees Enable Introspective Question Answering

The MOVER program is able to build And—Or trees because the specialists
have a tight correspondence to identifiable goals. Indeed, MOVER’s And—
Or trees are so illuminating, they can be used to answer questions about
how and why actions have been taken, giving MOVER a certain talent for
introspection into its own behavior.

Suppose, for example, that MOVER has put block A on block B, pro-
ducing the goal tree shown in figure 3.8.

Further suppose that someone asks, How did you clear the top of A?
Plainly, a reasonable answer is, By getting rid of block C. On the other
hand, suppose the question is, Why did you clear the top of A? Then a
reasonable answer is, To grasp block A.

These examples illustrate general strategies. To deal with “how?”
questions, you identify the goal involved in the And—Or tree. If the goal is
an And goal, report all of the immediate subgoals. If the goal is an Or goal,

60 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

you report the immediate subgoal that was achieved. To deal with “why?”
questions, you identify the goal and report the immediate supergoal.

Problem Reduction Is Ubiquitous in Programming

From a programming point of view, MOVER consists of a collection of
specialized procedures. Each time one specialized procedure calls another,
it effects a problem-reduction step.

More generally, whenever one procedure calls a subprocedure, there is
a problem reduction step. Thus, problem reduction is the problem-solving
method that all but the shortest programs exhibit in great quantity.

Problem-Solving Methods Often Work Together

Few real problems can be solved by a single problem-solving method. Ac-
cordingly, you often see problem-solving methods working together.

Suppose, for example, that you want to go from your house near Boston
to a friend’s house near Seattle. Earlier in this chapter, you learned that
you can use means—ends analysis to decide what sort of transportation is
most preferred for reducing the distance between where you are and where
you want to be. Because the distance between Boston and Seattle is large,
means—ends analysis doubtlessly would suggest that you take an airplane,
but taking an airplane solves only part of your problem: You still have to
figure out how get to the Boston airport from your house, and how to get
from the Seattle airport to your friend’s house. Thus, the initial goal, as
shown in figure 3.9, becomes three subgoals, each of which can be handled,
perhaps, by means—ends analysis.

SUMMARY

@ Generate-and-test systems often do identification. Good generators are
complete, nonredundant, and informed.

® The key idea in means—ends analysis is to reduce differences. Means—
ends analysis is often mediated via difference-procedure tables.

m The key idea in problem reduction is to explore a goal tree. A goal
tree consists of And goals, all of which must be satisfied, and Or goals,
one of which must be satisfied.

® Problem reduction is ubiquitous in programming because subprocedure
call is a form of problem reduction.

m The MOVER program uses problem reduction to plan motion sequences.
While MOVER is at work, it constructs a goal tree that enables it to
answer how and why questions.

