Responding to
Questions and
Commands

In this chapter, you learn how it is possible to capture the knowledge re-
quired to translate English questions or commands into relational-database
commands. Thus, you see that, in certain special circumstances, you can
arrange for a computer to deal with natural language.

The key idea is to exploit the relatively regular word order and small,
domain-specific vocabularies found in the questions and commands typi-
cally directed at relational databases. Word-order regularity is captured in
semantic transition-tree grammars, which are evolutionary descendants of

augmented transition-net grammars, usually referred to as ATN grammars.!

By way of illustration, you see how semantic transition-tree grammars
enable programs to translate English questions and commands involving
tools into database commands.

You should understand, however, that the ideas involved are just barely
strong enough to support database retrieval via natural language. The
problem of understanding unconstrained text seems unthinkably difficult,
and worse yet, the more you understand about natural language, the more
difficult the problems seem.

Once you have finished this chapter, you will be able to make simple
extensions to the sample grammar, targeting it, if you like, to another
database.

tATN grammars have never been popular with linguists because they are partly
specified by unrestricted computer programs, which linguists legitimately argue
are a poor representation for linguistic knowledge.

599

600 Chapter 29 Responding to Questions and Commands

Figure 29.1 A simple
transition-net grammar.

Sentence

O > noun phrase > verb phrase >O
O

T T2

O

ADJECTIVE > prepositional phrase

Noun phrase
T4 \
DETERMINER NOUN
Q S @

T3 T5
T6

Verb phrase

O

VERB

> noun phrase
>©)

m T8

®

Prepositional phrase

O PREPOSITION

hrase
o\ > noun p
N >@
T9 T10

SYNTACTIC TRANSITION NETS

In this section, you learn how syntactic transition-net grammars capture
linguistic knowledge about word order in English.

Syntactic Transition Nets Are Like Roadmaps

Generally, a grammar, viewed as a representation, is a set of conventions
for capturing linguistic knowledge of the sort you learned about in elemen-
tary school.

A syntactic transition-net grammar consists of a sentence net and a
collection of supporting nets, like those shown in figure 29.1.

Think of those nets as though they were an atlas full of roadmaps, and
think of words as directions for driving through those roadmaps. To test
a string of words to see whether it constitutes a valid sentence, you try
to move along a series of links from the initial node in the sentence net

A Powerful Computer Counted the Long Screwdrivers on the Big Table 601

to a terminal node—one with a circle in the center—using the words as
directions. If a particular string of words enables you to reach a terminal
node, then that string is said to be accepted or recognized by the transition-
net grammar, from which you conclude that the string of words is a valid
sentence with respect to the grammar.

Consider the sentence net shown in figure 29.1, for example. To move
through it, you must first traverse the link labeled > noun phrase, which
means that you must successfully traverse the noun-phrase net.

To move through the noun-phrase net, you must have a sequence of
words starting with a determiner, a word such as a or the; followed by zero
or more adjectives, such as powerful, long, or big; followed by a noun, such
as computer, screwdrivers, or table. Each time a word enables you to cross
a link, that word is removed from the list of words to be analyzed.

The noun may be followed by a prepositional phrase, such as on the
big table. The words in prepositional phrases are traversed using the
prepositional-phrase net.

Once you have traversed the noun-phrase net, you must move through
the verb-phrase net, as indicated by the link labeled > verb phrase in the
sentence net. Providing that all the words in the sentence are accounted
for in traversing the verb-phrase net, your analysis is complete, because
you end up at a terminal node, one marked as a double circle.

A Powerful Computer Counted the Long
Screwdrivers on the Big Table

To see how such an analysis works on an actual sentence, consider the
sentence, “A powerful computer counted the long screwdrivers on the big
table.” To verify that it is, in fact, a valid sentence, you must determine
whether the words specify a path through the grammar. Accordingly, you
start to move through the sentence net. Just following the entry node, you
encounter a noun-phrase link, labeled T1 in figure 29.1. This sends you off
to the noun-phrase net, which in turn requires you to attempt to traverse
the determiner lihk, T3, in the noun-phrase net.

Now it is time to look at the first word in the sentence. It is a, one of
the words in the determiner class. Having consumed a on the determiner
link, you are in a position to take either the adjective link, T4, or the noun
link, T5.

Assume, by convention, that you always are to try the uppermost of the
untried links first. Accordingly, you try the adjective link, T4, consuming
the word powerful.

Moving on to the next word, computer, your attempt to try the adjec-
tive link fails, so you try the noun link instead. This time, you succeed,
inasmuch as the word computer is a noun.

This success brings you to the noun-phrase net’s terminal node, where
there is the possibility of traversing the prepositional-phrase net.

602 Chapter 29 Responding to Questions and Commands

Sentence

Noun phrase

Consumes the powerful computer

Prepositional phrase Fails

Figure 29.2 The
analysis of a sentence
beginning “The
powerful computer
counted" In
this nested-box
diagram, graphical
inside corresponds
to a temporal during
relation among the
analyses of the
indicated nets.

Assume, by convention, that you are always to try to traverse the net
specified by a link, if a link is available, even if you are at a terminal
node. Accordingly, you try the prepositional-phrase link, T6, but you see
instantly that the next word, counted, is not a preposition. You conclude
that the prepositional-phrase net cannot be traversed, so you return to the
sentence net.

Figure 29.2 shows what has happened so far, from the point of view of
net traversals, using a nested-box diagram. By convention, a nested-box
diagram is a diagram in which graphical inside corresponds to temporal
during. Hence, the noun-phrase net must be traversed during the analysis
of the sentence net because the box describing the noun-phrase traversal is
inside the box describing the sentence-net traversal. Similarly, the failing
attempt to traverse the prepositional-phrase net occurs during the success-
ful analysis of the noun-phrase net.

Next, you have to see whether the remaining words in the sentence can
get you through the verb-phrase net, as required by link T2. After you
traverse the link labeled T7 with the verb counted, link T8 tells you that
you have to look for another noun phrase. This search takes you back to
the noun-phrase net again.

You quickly proceed through T3, T4, and T5, with the words the long
screwdrivers. Then, you try to traverse the prepositional-phrase link, link
T6. To get through the corresponding prepositional-phrase net, you need
a preposition, as dictated by link T9, and a noun phrase, as dictated by
link T10. The word on is a preposition, and the big table is a noun phrase,
so you get through the prepositional-phrase net, and return successfully
to the noun-phrase net. As there are no more prepositional phrases, a
subsequent attempt to go through the propositional-phrase net fails. You
are in a terminal noun-phrase node, however, so the noun-phrase net is
traversed successfully.

603

Semantic Transition Trees

Sentence

Noun phrase

Consumes the powerful computer

Prepositional phrase

Fails

Verb phrase

Consumes counted

Noun phrase

Consumes the long screwdrivers

Prepositional phrase Consumes on

Noun phrase Consumes the big table

Prepositional phrase Fails

Fails

Prepositional phrase

Figure 29.3 Analysis
of the sentence, “The
powerful computer
counted the long
screwdrivers on the
big table,” using a
semantic transition-
tree grammar. The
comments show

the words that are
consumed as nets
are traversed or else

indicate failure.
. |

Now you are in the verb-phrase net’s terminal node, indicating a suc-
cessful traversal of a verb-phrase net as well. Having finished with a verb-
phrase net, you return to the sentence net, where you find you are, again,
in a terminal node. Because there are no more words, you conclude that
the sentence is valid with respect to the grammar.

Everything you did during this analysis is summarized, in nested-box
form, in figure 29.3.

Such a simple grammar is easy to derail, of course. For example, be-
cause the grammar makes no provision for proper names, such as Hal, or
adverbs, such as quickly, it cannot deal with sentences such as “Hal quickly
counted the long screwdrivers on the big table.”

SEMANTIC TRANSITION TREES

In this section, you learn how it is possible to translate sentences, such as
the following, into relational-database commands:

604

Chapter

29 Responding to Questions and Commands

Count the long screwdrivers.
What is the location of the long red screwdriver?

A Relational Database Makes a Good Target

Relational databases, described briefly in Chapter 7 and in more detail
in the appendix, consist of one or more relations, each of which is a table
consisting of labeled columns, called fields, and data-containing rows, called
records. The following example, the tools relation, consists of eight records
with entries for the class, color, size, weight, and location fields.

Class Color Size Weight Location
Saw black medium heavy pegboard
Hammer blue large heavy workbench
Wrench gray small light pegboard
Wrench gray large heavy pegboard
Screwdriver blue long light workbench
Screwdriver black long light toolchest
Screwdriver red long heavy toolchest
Screwdriver red short light toolchest

From the perspective of this chapter, the most important characteristic
of relational databases is that English descriptions often correspond to
simple combinations of the relational-database commands, such as SELECT
and PROJECT. For example, you can retrieve the long screwdrivers by first
selecting the tools whose class field contains screwdriver, and then selecting
those tools whose size field contains long.

Pattern Instantiation Is the Key to
Relational-Database Retrieval in English

Now you are ready to understand the overall semantic transition-tree ap-
proach to translating an English question or command into database com-
mands:

B Use the question or command to select database-oriented patterns.

m Use the question or command to instantiate and combine the selected
patterns.

® Use the completed pattern to retrieve the database records specified in
the question or command.

@ Use the retrieved database items to respond to the question or com-
mand.

For the first example, the command “Count the long screwdrivers,” there
is one key pattern:

Moving from Syntactic Nets to Semantic Trees Simplifies Grammar Construction 605

Question-or-command tree

> objects
M COUNT < objects

count

how many a > objects
NS

identify

are there
)@ COUNT < objects

> attributes

<
A/
> objects
@ SHOW < objects

SHOW [PROJECT < objects over < attributes]

Figure 29.4 The top- SELECT < object with < values
level transition tree
of a simple semantic

grammar. SELECT [SELECT Tools with class = screwdrivers]
] . .
with size = long

Once instantiated, the key pattern looks like this:

When used on the sample database, the instantiated pattern locates long
screwdrivers, as required by the original English command.

Moving from Syntactic Nets to Semantic Trees
Simplifies Grammar Construction

A few simple changes to the idea of the syntactic transition net are all that
you need to construct systems that use English sentences to drive database
retrieval. Evidently, you avoid the overwhelming complexity of natural
language, as long as you are able to restrict yourself to database-oriented
questions and commands, proscribing declaratives.

The resulting changes lead to the idea of the semantic transition-
tree grammar. An example of such a grammar is shown in figures 29.4
through 29.7.

From those figures, you see that semantic transition-tree grammars
differ from the syntactic transition-net grammars in several ways:

606 Chapter 29 Responding to Questions and Commands

Objects tree

> determiner

> values

> object

> objects
>

Object tree

> object

/i

tool(s)

>() >@ SELECT < object with < values

@ < object

Tools

saw(s)

Determiner tree

V @\@

screwdriver(s)

SELECT Tools with class = saw

@ SELECT Tools with class = screwdriver

the

Figure 29.5 The
semantic transition
trees that enable the
analysis of object

descriptions.
L]

B Some link transitions require specific words.

For example, a link can be labeled with a word, such as count, as in the
top-level tree shown in figure 29.4. This link indicates that the first word
in the sentence must be count. A link also can be labeled with a word
followed by (s), such as tool(s), as in the object tree shown in figure 29.5.
This link indicates that the next word must be either the word fool or its
plural, tools.

Moving from Syntactic Nets to Semantic Trees Simplifies Grammar Construction 607

Values tree

> value

> values
>@ < value < values

Ck

Value tree

> value

< value

O
and @ > value)@ <value
©

@ size = long

long
/
O —)Q color = red

O

e

Figure 29.6 The
semantic transition
trees that enable
the analysis of value

descriptions.
]

B Some link transitions specify phrases semantically, rather than syntac-
tically.

Consider, for example, the objects link and the attributes link in figure 29.4.
These links—the ones labeled with > objects and > attributes—focus on
database entries, such as those for screwdrivers and sizes, rather than on
linguistic entities, such as nouns and adjectives. Accordingly, both the ob-
jects link and the attributes link are said to be semantically specified tran-
sitions, reflecting the change in name from syntactic grammar to semantic
grammar.

@ There are no nodes with two inputs.

This characteristic is why we are talking about transition-tree semantic
grammars rather than transition-net syntactic grammars.

Because of the change from nets to trees, there is a one-to-one cor-
respondence between paths and terminal nodes. Accordingly, once you
arrive at a terminal node, there is never any question about how you got
there, which makes it easy for you to decide which pattern, if any, to
use.

608 Chapter 29 Responding to Questions and Commands

Attributes tree

> attribute

> attributes
Q)@ < attribute < attributes

O

Attribute tree

and > attribute
)’Of @ < attribute

> attribute

< attribute

color
color

©
-0

©) won
4

weight

Figure 29.7 The
semantic transition
trees that enable the
analysis of attribute

descriptions.
.|

By way of contrast, compare the attribute tree shown in figure 29.7
with the attribute net shown in figure 29.8. In the attribute net, all links
converge on one terminal node, so just knowing that you are at that termi-
nal node tells you nothing about how you got there or what you should do.
Of course, you could, in principle, keep track of how you got there via some
sort of bookkeeping mechanism off to the side, but that alternative would
complicate your procedure and diminish your grammar’s transparency.

m Whenever a tree is traversed successfully, the tree’s name is considered
to be a tree variable, and is bound to a pattern located at a terminal
node. Accordingly, you can refer to the pattern as the tree variable’s
binding.

Sometimes, a pattern contains one or more tree variables, each of which is
marked by a left bracket, <. Such patterns act like templates.

Count the Long Screwdrivers

609

Figure 29.8 An alternate
rendering of the attribute tree.
Because the attribute tree is
shown as a net, rather than as
a tree, this rendering cannot be
part of a semantic transition-

tree grammar.
L |

Attribute net (not a tree)

size

Qm@ ?

All the paths traversing the objects tree in figure 29.5 lead to template-
like patterns. All the paths traversing the object tree and the determiner
tree lead to variable-free patterns.

® Tree variables, marked by left bracket symbols, <, are replaced by their
previously established bindings.

For example, the pattern attached to the terminal node of the upper path
in the values tree, shown in figure 29.6, contains two marked tree variables,
value and values. Whenever this pattern is instantiated, the marked tree
variables are replaced by the bindings that were established inside the value
tree and the values tree. Thus, the right bracket, >, is a mnemonic preface
that is meant to suggest take processing down into a subtree, whereas the
left bracket, <, is a mnemonic preface meant to suggest bring a binding up
from a subtree.

Count the Long Screwdrivers

To see how semantic transition trees work together to instantiate patterns,
consider the sentence “Count the long screwdrivers.” Its analysis, as you
will see, is captured by the nested-box diagram shown in figure 29.9.

The top-level tree, the question-or-command tree, is the first used, of
course. One link leading out of the entry node is labeled with the word
count, which matches the first word in the example sentence, taking you to
the objects link, whereupon you move your attention to the objects tree.

The objects tree has three links leading out of the entry node, the first
of which moves your attention to the determiner tree. Because the next of
the remaining words in the sentence is the, the determiner tree is traversed
successfully. The next link to be traversed in the objects tree is labeled
> objects, indicating that you should turn your attention to the objects
tree again, now on a second level.

At this point, the remaining words are long screwdrivers. The word
long is not a determiner, so the effort to traverse the determiner link fails.
Thus, your attention in the objects tree is now focused on the values link.

610 Chapter 29 Responding to Questions and Commands

Question or command Succeeds, returns database command
COUNT [SELECT [SELECT Tools with class = screwdriver]
with size = long]

Objects Succeeds, binds Objects to
SELECT [SELECT Tools with class = screwdriver]
with size = long

Determiner Consumes the

Objects Succeeds, binds Objects to
SELECT [SELECT Tools with class = screwdriver]
with size = long

Determiner Fails

Values Succeeds on lower path, binds Values to
size = long

Value Succeeds, but leads to failure

Values Fails along all three paths

Value Part of upper-path failure

Value Part of lower-path failure

Value Consumes long, binds Value to
size = long

Object Consumes screwdrivers, binds Object to
[SELECT Tools with class = screwdriver]

Figure 29.9 The nested-box diagram corresponding to the analysis of “Count the long screwdrivers.”
|

Count the Long Screwdrivers 611

Eventually, you successfully traverse the values tree, consuming the
word long as you do. To see how you do that, note that you first try
to traverse the upper path in the values tree. This attempt requires you
to traverse the value tree, which you do easily, consuming the word long.
Next, however, you must try to traverse the values tree itself on a sec-
ond level. You fail, however: On that second level, along the upper
path, you would need to traverse the value link; along the middle path
you would need the word and; and along the bottom path you would
also need to traverse the value link. Accordingly, you cannot traverse
the values tree on a second level, which means, in turn, that you can-
not traverse the original values tree along the upper path. You must re-
store the previously consumed word, long, to the remaining words, and
try another path from the node where the first alternative happened to be
Wrong.

You then see that the second path does not work either, because the
second path requires the word and whereas the first of the remaining words
is long.

Fortunately, however, the third path requires only the traversal of the
value tree, which you have done before and can do again with the word
long.

Now it is time to think about the consequences of successful traversals.
Recall that the successful traversal of a tree causes the tree’s name to be
bound to the instantiated pattern found at the terminal node. Thus, the
successful traversal of the value tree binds value, the tree’s name, to the
pattern size = long.

Similarly, successful traversal of the values tree along the lower path
binds the word values to the instantiated form of the pattern < wvalue.
Because instantiation just replaces tree variables with their bindings, the
instantiated form of < wvalue is size = long. Thus, the tree variables values
and value are both bound to size = long.

Now recall that all the attention to the values and value trees was
launched while you were working on the middle path of the second-level
objects tree. Having traversed the values link successfully, you next turn
your attention to the object tree, with only the word screwdrivers left to
be consumed.

Fortunately, there is a link in the object tree labeled with the word
screwdrivers. Hence, you traversed the object tree successfully, binding the
tree variable object to the instantiated pattern, SELECT Tools with class =
screwdriver.

At this point, you can see that the meaning of the word screwdriver,
in this limited context, is captured by a database command that retrieves
all the screwdrivers from the tools relation when the database command is
executed. After you have traversed the second-level objects tree through
the middle path, the tree variable objects is bound to the instantiated

612

Chapter

29 Responding to Questions and Commands

form of the pattern, SELECT < object with < values, which is, of course,
as follows:

SELECT [SELECT Tools with class = screwdriver]
with size = long

Now you see that the meaning of the word long is captured by way of
the incorporation of the size = long pattern—the one found in the value
tree—into a database command.

Having traversed the second-level objects tree, you revert your atten-
tion to the original objects tree—the one that consumed the word the along
its upper path. Because the original objects tree just binds the objects tree
variable to whatever it is bound to on the next level down, you return your
attention to the question-or-command tree with the same binding produced
by the second-level objects tree.

Now you have just finished your traversal of the upper path in the
question-or-command tree. Instantiating the upper path’s pattern pro-
duces the following, which delivers the required result when the database
command is executed:

COUNT [SELECT [SELECT Tools with class = screwdriver]
with size = long]

Recursion Replaces Loops

Note that semantic transition trees have no loops of the sort used in syn-
tactic transition nets for adjectives and prepositional phrases. Luckily,
no loops are needed, because you can replace loops with trees that use
themselves; or said more technically, you can replace loops with recur-
sive tree analysis. The example grammar exhibits this replacement in the
objects—object trees, the values—value trees, and the attributes—attribute
trees.

To see how such tree pairs handle multiple words, suppose that you are
just about to try the values tree and that the remaining words are long red
screwdrivers. Clearly, you cross the value link on the upper path with the
word long, leading to another, recursive attempt to cross the values tree,
this time with the words red screwdriver. This time, after failing on the
upper two paths, you succeed on the lower path, successfully traversing the
lower level values tree as well as the upper. Figure 29.10 shows how the
values tree is traversed in detail.

Thus, you see that the values—value combination handles two word-
value sequences successfully. Longer sequences require more recursion—
nothing else.

In summary, here are the procedures for traversing semantic transition
trees and transition-tree links.

Recursion Replaces Loops

613

Values

Succeeds, binds Values to
size = long color = red

Value

Consumes Jong, binds Value to
size = long

Values

Succeeds on lower path, binds Values to
color = red

Value Succeeds, but leads to failure

Values Fails along all three paths

Value Part of upper-path failure

Value Part of lower-path failure

Value Consumes red, binds Value to
color = red

Figure 29.10
Recursion replaces
looping in semantic
transition trees. Here,
the words long and
red are consumed by
the values tree and
the value tree working

together.
|

To traverse a transition tree,

> Determine whether it is possible to reach a success node, de-
noted by a double circle, via word and subtree links.

> If it is not possible, announce failure.
> Otherwise,

> Instantiate the pattern associated with the double circle.
Replace pattern variables, marked by < prefixes, with bind-
ings established as subtree links are traversed.

> Bind the tree’s name to the instantiated pattern.
> Announce success.

614 Chapter 29 Responding to Questions and Commands

To traverse a link,

> If the link is a subtree link, marked by a right bracket, >,
and the name of a subtree, try to traverse the subtree. If
the traversal is successful, bind the subtree name to the
instantiated pattern found at the terminal node of the
subtree.

> If the link is a word link, the next word in the sentence
must be that word. The word is consumed as the link is
traversed.

SUMMARY

m A full understanding of natural language lies beyond the present state
of scientific knowledge. Nevertheless, it is possible to achieve engineer-
ing goals in limited contexts.

® One way to interpret questions and commands, in the limited context
of database access, is to use the words in the questions and commands
to guide you through a collection of nets or trees. You collect informa-
tion in the course of the movement that makes it possible for you to
instantiate database retrieval patterns.

® Moving from syntactic nets to syntactic trees eliminates loops and sim-
plifies pattern instantiation. Moving from syntactic trees to database-
specific semantic trees exposes constraints and simplifies tree construc-
tion.

m Some links in semantic transition trees are traversed by individual
words. Others require the traversal of a subtree.

® When a subtree is traversed successfully, a pattern is instantiated, and
that instantiated pattern becomes the value bound to the subtree’s
name. When the top-level tree is traversed successfully, a pattern is
instantiated, and that instantiated pattern is used to access a database.

BACKGROUND

The notion of an augmented transition net was introduced in a paper by
J. Thorne, P. Bratley, and H. Dewar [1968]. Work by Daniel G. Bobrow
and Bruce Fraser [1969] and by Willlam A. Woods [1970] developed and
popularized the idea soon thereafter. Woods, especially, became a major
contributor.

The work of Woods on his LUNAR system, and the work of Terry Wino-
grad on his SHRDLU system [1971], were the precursors to today’s commer-
cial language interfaces, for they showed that sentence-analysis procedures

Q&A Translates Questions into Database-Retrieval Commands

The popular Q&A system is one example of a database system with a practical

natural-language interface based on the semantic-grammar approach. Q&A’s
semantic grammar is much more complete than is the one you learned about in
this chapter, but it basically provides the same capabilities.

Suppose, for example, that you are an investor. You can use Q&A to keep
track of information about the companies in which you are an investor, enabling
a dialog:
> Tell me the name of the company that makes Q&A?

Q&A translates the question into a database command aimed at a database

containing company and product fields. The response to the database command
enables Q&A to print a one-record table:

Company Product
Semantec = Q&A

> Which product category is Q&A?

Product Product category
Q&A Database software

> Count the number of software companies.

Q&A responds with a number. The command is easy to obey for any system
based on a semantic grammar, because it is, after all, not much different from
the command, “Count the long screwdrivers.”

> Which companies in Massachusetts are software companies?
Responding, Q& A prints another table:

Company Business City State

Ascent Technology Software Cambridge MA
Bachman Associates Software Burlington MA

> What are the product categories of Ascent Technology’s products?
Responding, Q&A prints still another table:

Product Product category

Aris Resource allocation
Ferret Database mining

616 Chapter 29 Responding to Questions and Commands

can instantiate search-procedure slots. Woods’s work involved questions
about moon rocks. Winograd’s work involved questions about a simulated
world of blocks.

For a good exposition of semantic transition-tree grammars, see work
by Gary Hendrix and his associates [Hendrix et al. 1978]. The well-known
LIFER system is based on this work, and it led eventually to Q&A, which
provides natural-language access to databases.

