Recognizing
Objects

In this chapter, you learn how it is possible to identify objects by
constructing custom-tailored templates from stored two-dimensional image
models. Amazingly, the template-construction procedure just adds to-
gether weighted coordinate values from corresponding points in the stored
two-dimensional image models. For orthographic projections, the template
is perfect—and it is nearly perfect even in perspective projections.

Previously, many researchers thought object identification would have
to be done via the transformation of images into explicit three-dimensional
descriptions of the objects in the images. The template-construction pro-
cedure involves no such explicit three-dimensional descriptions.

The template construction procedure does require knowledge of which
points correspond, however. Accordingly, you also learn about methods for
solving the correspondence problem.

By way of illustration, you see how the linear combination procedure
handles similar-looking stylized objects: one is an “obelisk,” and another
is a “sofa.”

Once you have finished this chapter, you will know how the linear
combination procedure works, you will appreciate its simple elegance, and
you will understand when it is the right approach.

LINEAR IMAGE COMBINATIONS

In this section, you learn how identification can be done by template con-
struction and straightforward matching.
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Conventional Wisdom Has Focused on Multilevel Description

Most of the chapters in this book present ideas without providing any
explanation about how those ideas emerged. Accordingly, it is easy to
imagine that solutions to hard problems improve steadily, whereas, in
fact, the march toward solutions to hard problems always seems to in-
volve long periods of little progress, punctuated occasionally by a startling
advance.

To appreciate the startling advance associated with the ideas intro-
duced in this chapter, you really need to know that many vision experts
believed for years that object identification would require image processing
on several descriptive levels, with matching occurring only on the high-
est:

B At the lowest descriptive level, brightness values are conveyed explicitly
in the image.

@ The brightness changes in the image are described explicitly in the
primal sketch.

B The surfaces that are implicit in the primal sketch are described ex-
plicitly in the two-and-one-half-dimensional sketch.

® The volumes that are implicit in the two-and-one-half-dimensional
sketch are described explicitly in the volume description.

Information in the primal sketch and the two-and-one-half-dimensional
sketch describes what is going on at each point in the original image. Hence,
the primal sketch and the two-and-one-half-dimensional sketch often are
said to be viewer centered.

Unlike the information in the primal sketch and the two-and-one-half-
dimensional sketch image, the information in a volume description often is
expressed in terms of coordinate systems attached to objects. Such descrip-
tions are said to be object centered. Only after constructing a volume
description, according to conventional wisdom, can you go into a library
and match a description extracted from an image with a remembered de-
scription.

Characteristically, conventional wisdom has turned out to be com-
pletely wrong. In the rest of this section, you learn that matching can
be done at the primal sketch level, rather than at the volume description
level.

images Contain Implicit Shape Information

In elementary geometry, you learned that a polyhedron is an object whose
faces are all flat. When you look at a mechanical drawing of a polyhe-
dron, the combination of a front view, a side view, and a top view of that
polyhedron is sufficient to give you full knowledge of each vertex’s three-
dimensional position.


anthony
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More generally, a few images, each showing a few corresponding ver-
texes, give you an idea of where those corresponding vertexes are, relative
to one another, in three dimensions, even when the images are not the
standard front, side, and top views.

For a long time, however, it was not clear how many images and how
many vertexes are required to recover where the vertexes are, relative to
one another, in three dimensions. Then, in 1979, Shimon Ullman showed
that three images, each showing four corresponding vertexes, are almost
enough to determine the vertexes’ relative positions. All that you need in
addition is some source of information about the polyhedron’s size, such as
the distance between any two vertexes.

Thus, three images carry implicit knowledge of a polyhedron’s shape as
long as those images all contain at least four corresponding vertexes. 1If you
make the knowledge of shape explicit by deriving the three-dimensional co-
ordinate values of all the vertexes, then you can construct any other image
by projecting those vertexes through a suitably placed eye or lens onto a
suitably placed biological retina or artificial sensor array.

Knowing that any other image can be constructed via the intermediate
step of deriving three-dimensional coordinate values naturally leads to two
important questions:

@ Given three recorded images of a polyhedron, are there simple equa-
tions that predict the coordinate values of the points in a new, fourth
image using only the coordinate values of the corresponding points in
the three recorded images?

a If the answer to the first question is yes, is it possible to determine
all the parameters in those simple prediction equations using only the
coordinate values of a few of the corresponding points in the recorded
images and the new image?

Happily, there are simple equations that predict the coordinate values, and
it is possible to determine all the parameters in those simple prediction
equations using only a few corresponding points. The coordinate values
of the points in a new, fourth image are given by a linear combination of
the coordinate values of the points of the three recorded images. Also, you
can determine the constants involved in the linear combination by solving
a few linear equations involving only a few of the corresponding points.
Consequently, when presented with an image of an unidentified polyhedron,
you can determine whether it can be an image of each particular polyhedron
recorded in a library.

One Approach Is Matching Against Templates

To streamline further discussion, let us agree to call each object-describing
image collection a model, short for identification model, a representa-
tion specified loosely as follows:
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Figure 26.1 One possible
approach to identification is to
create templates from models.
On the left, you see an object
that may be an obelisk; in the
middle, you see an obelisk
template; and on the right, the
two are overlaid. One gquestion
is whether the models can
consist exclusively of stored

two-dimensional images.
L}
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An identification model is a representation
In which

> An image consists of a list of identifiable places, called
feature points, observed in an image.

> The model consists of several images—minimally three for
polyhedra.

Furthermore, let us agree to call each unidentified object an unknown.
Using this vocabulary of models and unknowns, you want to know whether
it is practicable to match an unknown with a model by comparing the
points in an image of the unknown with a templatelike collection of points
produced from the model. In figure 26.1, for example, the nine points
seen in the image of an unknown match the nine points in an overlaid,
custom-made obelisk template.

Whenever a general question is hard, it is natural to deal with a special
case first. Accordingly, suppose that objects are allowed to rotate around
the vertical axis only; there are to be no translations and no rotations about
other axes. In figure 26.2, for example, the obelisk shown in figure 26.1 is
viewed in its original position, and then is rotated about the vertical axis
by 30°, 60°, and 90°.

In each of the images shown in figure 26.2, the obelisk is projected
orthographically along the z axis. As explained in figure 26.3, the z and y
coordinate values for points in the image are exactly the z and y coordinate
values of the obelisk’s vertexes in three dimensions.
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Figure 26.2 An “obelisk” and
three orthographic projections of
the obelisk, one each for 30°,

60°, and 90° rotations.
—
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Figure 26.3 Orthographic
projection. Light moves along
paths parallel to the z axis to
an image plane somewhere
on the z axis. The x and

y coordinate values of the
vertexes in an image equal
their three-dimensional x and

y coordinate values.
—

Image plane
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Somewhat unusually, the coordinate system shown in figure 26.3 is a
left-handed coordinate system, but most people like to have the distance
from the image plane increase with increasing z, which dictates the left-
handed arrangement.

Next, note that corresponding points in figure 26.2 are labeled with
corresponding numbers. In general, matching points in one image with
those in another to establish correspondence may be difficult; for the mo-
ment, however, just assume that the necessary matching can be done. You
learn about several approaches in the next section.

Now, by way of preview, consider a point that appears with an z
coordinate value of zj, in one obelisk model image, and with an z coordinate
value of z;, in another obelisk model image. Soon, you learn that the z
coordinate value of the same point in an observed image is a weighted sum
of the coordinate values seen in the model images:

Tr, = oz + ﬂ:lI]Z.
Next you see that @ and (3 can be recovered using a few corresponding

points, making it easy to predict where the remaining points should be;
providing, ultimately, an identification test.

For One Special Case, Two Images Are
Sufficient to Generate a Third

The nature of orthographic projection is such that a point corresponding to
a vertex located at (z, y, z) in space is located at (, y) in the orthographic
image. After rotation about the y axis, however, the vertex is no longer
at (z, y, z). Although the y coordinate value is unchanged, both the z
and z coordinate values change. As demonstrated by some straightforward
trigonometry, the coordinate values, after rotation, are determined by the
sines and cosines of the rotation angle, . More precisely, the new z, y,
and z coordinate values, 75, g, and z, are related to the old z, y, and z
coordinate values by the following equations:

Tg = xcosf — zsin b,

Yo =Y,
29 = zsinf + zcosf.

Because the y coordinate value endures rotation and orthographic projec-
tion without change, and because the z coordinate value does not enter
into orthographic projection, your interest is exclusively in the fate of the
z coordinate value as an object rotates.

To keep the discussion as concrete as possible, assume that the obelisk
is rotated from its original position twice, once by 61, and once by 6;,, to
produce two model images, I; and I,. What you want to know is what the
obelisk looks like when rotated from its original position a third time, by
0;,, producing image I,.
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Consider a particular point with original coordinate values z, ¥, and z.
In the two model images of the rotated obelisk, the z coordinate values of
the same point are z7, and z7,. The problem is to find a way of determining
zj, given the known values, rj, and zj,. Once you can do this for any
particular point, you can do it for all points and thus construct the desired
third image of the obelisk. So far, however, you can only relate z7,, zr,,
and x7, to the original z and 2 values and the angles of rotation:

x5, = zcosfyp — zsinfy,,
zj, = zcosfp, — zsinby,,
7, = zcosfy, — zsinby,.

To understand what these equations can do for you, you need to understand
one subtle point. zj, z1,, and zj, vary from point to point, but r,, 8r,,
and 0, do not. The angles do not change as long as you are working with
a fixed set of images. Accordingly, if you are trying to solve the equations
for z7, for a fixed set of images, the sines and cosines of the angles are
constants.

Better still, the equations are three linear equations in the three un-
knowns, 7j,, Z, and z. From elementary algebra, you know that you can
solve three linear equations in three unknowns, leaving g, expressed as a
weighted sum of =7, and zy,:

1, = azy + BT,
Describing this expression in mathematical language, zj, is given by a
linear combination of z;, and z7,, and o and 3 are called the coefficients
of the linear combination.

Now, if you only knew the actual values for o and (3 relating observed
points to points in the two model images, you could predict where every
point should be from where it appears in the two model images. If the
predicted points match the actual points observed, then the observed object
matches the model object.

Of course, you could work through the algebra and determine how «
and 3 can be expressed in terms of sines and cosines of 8y, 0,, and 0;,.
But that would not help you, because you normally do not know any of
those angles. You need another approach.

identification Is a Matter of Finding Consistent Coefficients

You have just learned that there must be constants a and 3 such that the
coordinate values in an observed image are predicted by the equation

z1, = aTp + Bz,
Because a and 3 depend on only the three images, L, I, and I,, you need
only two linear equations to determine their values.

Fortunately, two sets of corresponding points provide those equations.
Suppose, for example, that you have found a point P; in the observed image
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Figure 26.4 Two unknown
objects compared with
templates made from obelisk
images to fit points P; and

P,. The unknown on the left

is actually an obelisk rotated by
45°. It matches the template of
circles produced from the two
obelisk models. The unknown
on the right—the one that looks
like a jukebox—does not match

the template made for it.
]

P7

b b

P6

U1
Obelisk

P5

U2
Jukebox

and the corresponding points in the model images. Similarly, suppose you
have found point P, and its corresponding points. Then, the z coordinate
values of both points in the observed image must satisfy the following

equations:

Tp,1, = aZp, 1, + BTP. L)
Tp,1, = QTP,1, + BIP,L-

Now you have two, easily solved equations in two unknowns. The solutions
are, of course,

IR IoTP L, — TP Io TP I

b
Ip L, TPyI; — TP TP 12

— TP, Io TPy — TP1Io TPy
TP, TP I; — TP TP I,

Once you have used two of n sets of corresponding points to find « and 33,
you can use o and (3 to predict the positions of the remaining n — 2 sets of

corresponding points of the observed object:

zp,1, = @Tp;1, + BTP; I,

The predicted point positions then act like a template that the points in the
observed image must match if the object in the image is the same object

seen in the model images.
For the obelisk example, the following table gives the z coordinate

values for points P; and P, in the images of the obelisk after rotation by
30° and 60°. The table also gives the z coordinate values of corresponding
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points on the two unknown objects shown in figure 26.4. The y coordinate
values are not shown, because they do not vary from image to image.

Position in Position in Position in Position in

image L image I image U image Us

zp, -2.73 -2.73 -2.83 —3.54
zp, 0.73 -0.73 0 0.71

Using the z coordinate values, you can calculate what o and 8 must be
for each of the two unknown objects by substituting values from the table
into zp,1, = aTp;, + Bzp;I,- For the first unknown object, you have, for
example, the following equations after substitution:
—2.83 = a(—2.73) + B(—2.73),
0 = «(0.73) + B(—0.73).

Solving these equations, you have oo = 0.518315 and 3 = 0.518315. Solving
the corresponding equations for the second unknown yields o = 1.13465 and
B = 0.16205. You can use these a and 3 values to predict the z coordinate
values for each of the remaining points, with the following results:

U, predicted U, actual U, predicted U, actual

zp, —2.83 —2.83 —3.54 —3.54
zp, 0 0 0.70 0.70
zp, 1.41 1.41 2.12 2.12
zp, 2.83 2.83 3.54 4.24
P, 2.83 2.83 3.54 3.54
TP, 0 0 —0.70 -0.70
zp, —2.83 —2.83 -3.54 —2.83
Zpg —1.41 -1.41 —2.12 —-2.12
zp, 0 0 —0.70 0

Evidently, the first unknown is an obelisk, because all predicted points
are where they should be, as shown in figure 26.4; the second unknown
is not an obelisk, because three predicted points are in the wrong place.
Although the second unknown has much in common with the obelisk, the
second unknown is wider, and its front and back are tapered, rather than
vertical, making it look a bit like a jukebox.

The Template Approach Handles Arbitrary
Rotation and Translation

In one special case, you have seen that identification can be done using only
two model images together with two points that appear in both of those
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model images and in an image of an unknown object. The special case is
severely restricted, however; only rotation around one axis is permitted.

You have concentrated on the one-axis-rotation special case for two rea-
sons. First, looking at special cases is the sort of thing researchers generally
do when they are trying to develop a feel for what is going on. Second,
the one-axis-rotation special case is within the reach of straightforward
mathematics.

More generally, however, you have to expect that an unknown may
have been arbitrarily rotated, arbitrarily translated, and even arbitrarily
scaled relative to an arbitrary original position. To deal with these changes,
you first have to believe, without proof here, that an arbitrary rotation of
an object transforms the coordinate values of any point on that object
according to the following equations:

Ty = Tzz(g)z + Tyz(g)y + sz(g)z1
Yo = sz(e)l‘ + ryy(g)y + sz(a)za
29 = 14,(0) + 1y, (0)y + 122(0) 2.

Note that 7., (6) is the parameter that shows how much the z coordinate of
a point, before rotation, contributes to the z coordinate of the same point
after rotation. Similarly, r,,(6) is the parameter that shows how much the
y coordinate of a point, before rotation, contributes to the z coordinate of
the same point after rotation.

If, in addition, the object is translated as well as rotated, each equation
gains another parameter:

Ty = sz(e)x + Tyz(e)y + TZZ(G)z + ta,
Yo Tzy (9)-'5 + Tyy(o)y + rzy(O)z + ty,
29 = 12,(0)2 + 1y, (0)y + 722(0) 2 + ..

where the ts are all parameters that are determined by how much the object
is translated.

Now you can repeat the development for the one-axis-only special case,
only there must be three model images. These three model images yield
the following equations relating model and unknown coordinate values to
unrotated, untranslated coordinate values, z, y, and z:

zr, = To(01) + 1y (01)y + T2 (01)2 + £2(61),
T, = T30 (02)Z + Ty (02)y + 722 (02) 2 + t2(62),
T, = Tox(03)T + Tyz (03)y + T22(03) 2 + t2(63),
Ty = T2 (00)T + 7y2(00)y + T2z (00)2 + £:(00).

Plainly, these equations can be viewed as four equations in four unknowns,
z, y, 2, and x7,, which can be solved to yield z;, in terms of zy,, zy,, and
77, and a collection of four constants:

z1, = 0zTp, + BzTr, + Yo T, + Oz,
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where a, Bz, 7z, and 8, are the constants required for z-coordinate-value
prediction, each of which can be expressed in terms of rs and ¢s. There is
no reason to go through the algebra, however, because, as in the one-axis-
only case, there is another way to obtain the values of oz, Bz, ¥z, and 6,
without knowing the rotations and translations.

Following the development for the one-axis-only special case, you can
use a few corresponding points to determine the constants. This time,
however, there are four constants, so four points are required:

tp,1, = QzZp 1, + BuTPl, + V2 TP T bz,
TP,y = AzTPy1, + BoTPyl, + VeTPply + bz,
Tp,1, = QzTPy1, + B2TPi + Y2TP3ls T bz,
TP, 1y = CzTPyL, + BoTryly + V2TPuts T bz

Solving these equations for oz, Bz, Yz, and 8, enables you to predict the =
coordinate values of any point in the unknown image from the correspond-
ing points in the three model images.

Note, however, that you have to consider the y coordinate values also.
There was no need to consider y coordinate values in the one-axis-only
special case because rotation was around the y axis, leaving all y coordinate
values constant from image to image. In the case of general rotation and
translation, the y coordinate values vary as well.

Fortunately, the development of equations for y values follows the de-
velopment of equations for the z values exactly, producing another, differ-
ent set of four constants, ay, By, vy, and é, for the following equation:

Yo = ayyn + Byyn +VyYi + by-
Thus, the identification procedure requires three model images for each
identity that an object might have:

To identify an unknown object,

> Until a satisfactory match is made or there are no more
models in the model library,

> Find four corresponding points in the observed image
and in a model’s three library images.

> Use the corresponding points to determine the coeffi-
cients used to predict the z and y coordinate values of
other image points.

> Determine whether a satisfactory match is made by
comparing the predicted z and y coordinate values with
those actually found in the observed image.

> If a satisfactory match occurs, announce the identity of
the unknown; otherwise, announce failure.
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Figure 26.5 Three obelisk
images. The one on the

left has been rotated 30°
around the x axis relative to
the standard initial standing
position, pitching it forward;

the second has been rotated
around the y axis; and the third
has been rotated around the z

axis.
— |

Figure 26.6 Three unknown
objects are compared to
templates made from obelisk
images using the points marked
by black circles. The unknown
on the left matches the obelisk
template. The unknowns
resembling a jukebox and a
sofa do not match.

Thus, you need three images, like those in figure 26.5, to have an obelisk
model that is good enough to recognize obelisks with unrestricted rota-
tions and translations. With such a model, and knowledge of how four
corresponding points in the model correspond to four points in each of the
object images shown in figure 26.6, you identify just one of those objects
as an obelisk.

The Template Approach Handles Objects with Parts

So far, you have learned that the z coordinate value of any point is given
by a linear combination of the coordinate values in two or three model
images. Now you learn that the z coordinate value is given by a linear
combination of the coordinate values in several model images, even if an
object has parts that move relative to one another.
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:
=

Figure 26.7 An object with
two parts, C; and (3, each

of which rotates independently
about the y axis.

P

So as to keep the algebra as uncluttered as possible, the explanation is
focused on the special case of rotation about the y axis, and the example
is the one shown in figure 26.7.

Note that each part is, by itself, one rigid object. Accordingly, the
£ coordinate value of a point in an observed image, zj, is determined by
two model images and a particular a, 8 pair specialized to one part of the
object, as indicated by elaborate a and 3 subscripts:

T, = aC 1,2h + Bl Tl
The €, in the subscripts indicates that the a and 3 values are for part 1;
the I, subscript indicate that the o and 8 values transform /; and I, values
into I, values.

Similarly, z;, is given by a different a, 8 pair if the other part is in-

volved:

T, = 0CyIoTh + BCalo T
Amazingly, if you have enough images, you do not need to know to which
part a point belongs, for there is a set of four coefficients—a;, 3,8, y—such
that the z coordinate value is determined by four model images, four co-
efficients, and the following equation, no matter to which part the point
belongs:

z, = azy + Bz, + bz, + Y11, -

To see why, you have to go through a bit of algebra, but in spite of the
necessary subscript clutter, there is only one mathematical insight involved:
You can solve n independent linear equations in n variables.
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Strategically, you need to convince yourself that the four-coefficient
equation for zj,, the one that requires no knowledge of which part is in-
volved, does the same thing as the two-coefficient equation for z;,, the one
that does require knowledge of which part is involved. Said another way,
you need to be sure that there is a set of four coeflicients, «, 3, 6,7, such
that the following is true if z;, is a coordinate value of a point on part 1:

azy + B, + éxr, + v, = acy 1,7 + By 1,1, -
Alternatively, the following is true if z;, is a coordinate value of a point on
part 2:
azy, + Bzy, + bzr, + 21, = 1,2 + Bey1, 2,
Focus for now on the case for which z;, is the z coordinate of a point that
belongs to part 1. Because you assume you are dealing with just one part,
you know that two model images suffice to determine the z;, coordinate
value of any point in any image. Accordingly, z;, and z;, can be determined
by z;, and zj,, along with an «, 8 pair suited to the part and the images
produced, as indicated by the subscripts:
Tr, =ac, T + B2,
T, =0c, L2 + B¢, 1,71,
Evidently, z7,, given that the point is on part 1, must be determined by
the following after substitution for z;, and z;,:

T, = azy, + Bz, + 6(actn + Be L) +Y(ac Lz + BoyLtn)-

Rearranging terms yields the following:
21, = (@ +bac, 1, +yac 1)z + (B+ 680, 1, + VBe, 1) 21,

But you know that z;, = a¢, 1,21, + Bc,1,%1,- So now you can equate the
two expressions for zj,, yielding the following:
ac1,%n + B, %1, = (a+bac  +vac,n)zn + (B+68B8c 1, +YBoy1,) %1,
For this equation to hold, the coeflicients of z;, and zj, must be the same,
producing two equations in the four coefficients, «, 3, 6,~:

oo 1, =a+0ac, 1, + Yoo,
Bei1, =B+ 68c,1, +¥8c, 1,

Going through exactly the same reasoning, but assuming that z belongs to
part 2, produces two more equations in the four coefficients:

o1, =0+ 00c, + Yoo, 1,
Beulo =B+ 68c,1, + ¥Bc, 1,

Now you have four equations in four unknowns, thus fully constraining «,
B3, 6, and 4. The only «, 3, 6, combination that works, no matter what,
is the combination prescribed by those four equations.

Of course, none of this computation would do any good if you had to
use the solutions to determine «, 3, 6, ~, for then you would have to know
all the particular «, 3 pairs appropriate to the individual parts and images.
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Figure 26.8 Images
of two unidentified
automobiles. Images
courtesy of Ronen
Basri.

Fortunately, however, you can use the same idea that proved invaluable
before: Given that you know that an appropriate set of coefficients exists,
you can create a different set of equations, with easily obtained constants,
by looking at four distinct points:

zp 1, =0Tp,1, + BTp,1, + 0P, 1y + VTP, L,
IpyI, =QTPp, I, + ,81?}3212 + 6IP213 + VTP, Iy
Tpy1, =QTpy1, + BTPy1, +0Zpy1, + VTP L
ITp,l, =OTP, Iy + B-’L‘P‘:Iz + 6$P413 + YTP, 1,

The Template Approach Handles Complicated Curved Objects

To get a feeling for the power of the template approach, consider the two
toy-automobile images shown in figure 26.8. To initiate identification, you
have to reduce both to line drawings, as in figure 26.9.

Suppose that each automobile is known to be either an old-model Volk-
swagen or an old-model SAAB. To determine which it is, you need to match
the drawings to constructed-to-order templates. Remarkably, the templates
can be made straightforwardly, even though the objects have curved sur-
faces. All you need to do is to increase the number of images that constitute
a model. Instead of the two model images needed for rotation about a ver-
tical axis, you need three. Accordingly, you can form a Volkswagen model
by taking three pictures and rendering those pictures as drawings. You can
form a SAAB model the same way. Both are shown in figure 26.10.
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Figure 26.9 Drawings of
two unidentified automobiles.
Drawings courtesy of Ronen

Basri.
. ]

Figure 26.10

Models consist of three At the top of figure 26.11, the unidentified automobile on the left in
drawings. Above is a figure 26.9 is shown together with a template manufactured for the drawing
Volkswagen model; from Volkswagen images. As shown, the fit is just about perfect. At
below is a SAAB the bottom of figure 26.11, the unidentified automobile on the right in
model. Drawings figure 26.9 is shown together with a template manufactured for the drawing
courtesy of Ronen from Volkswagen images. The fit is terrible, indicating that the drawing
Basri. is not a drawing of a Volkswagen. Had the template been made from the

SAAB model images, however, the fit would have been just about perfect.
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Figure 26.11

Above is a drawing

of a Volkswagen, a
template manufactured
from Volkswagen
images, and the two
images superimposed.
Below is a drawing

of an SAAB, a
template manufactured
from Volkswagen
images, and the

two superimposed.
Drawings courtesy of
Ronen Basri.

ESTABLISHING POINT CORRESPONDENCE

In this section, you learn how it is possible to determine how the points in
one image correspond to the points in another, a necessary prerequisite to
template construction.

Tracking Enables Model Points to Be Kept in Correspondence

Actually, it is relatively easy to create three images of an object, with
known point correspondences, to serve as a model. All you need to do is to
move the object slowly, taking many intermediate snapshots between each
pair of images that is to be in the model. That way, the difference between
adjacent snapshots is so small, corresponding points are always nearest
neighbors, and you can track points from one model image to another
through the intermediate snapshots, as suggested in figure 26.12.

Only Sets of Points Need to Be Matched

When you are confronted with an unknown object, there can be no such
thing as intermediate snapshots lying between the unknown’s image and
one of the model images. Consequently, matching the points is much
harder.
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Figure 26.12 Moving an

object slowly makes it possible
to track points from one model
image to another through
intermediate snapshots.
Corresponding points are

always nearest neighbors
in adjacent snapshots, even
though they are not necessarily

nearest neighbors in the
model images. Here five
obelisk images are shown, with

adjacent pairs rotated by 10°.
e

Accordingly, it is important to know that it is enough, in the general
case, to establish that sets of points correspond, without knowing exactly
how the points in the sets match up individually.

To see why, consider the one-axis-rotation special case again and recall
that, for any point, P;, the following equation holds:

zp,1, = @Tp;1, + BTP;I,-
Accordingly, the equation must hold for points Py and Ps:

Tp, 1, = 0Tp, I, t BIP Is
Tp,1, = 0Zp,1, t+ BIP, I,
Adding these equations produces the following:

(21, + Tpy1o) = TPy 1y + TPa1) + B(EPi L, + TPa1a)-
Repeating for two other points, P3 and P, provides a second equation in
the two unknowns, a and 3:

(2py1y + TPalo) = (@pyr, + TPun) + B(EPs 1, + TPuT2)-

Note that, wherever zp, 1, appears, it is added to zp,1,, and vice versa.
Similarly, wherever zp,7, appears, it is added to zp,1,, and vice versa.
Accordingly, there is no harm in confusing zp, 1, and zp,1,, and there is no

harm in confusing zp,, and zp,r,- By adding up the z coordinate values
of the points in the sets, you eliminate the need to sort out exactly how
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the points in the sets correspond. It is enough to know that the points in
one set are among the points in the corresponding set.

Thus, for the one-axis-rotation special case, you do not need to find
two corresponding points in two images. You need only to find two corre-
sponding sets of points in two images.

The argument generalizes easily. For arbitrary rotation, translation,
and scaling, you do not need to find four corresponding points in three
images. You need only to find four corresponding sets of points in three
images.

Heuristics Help You to Match Unknown Points to Model Points

Once you know that it is enough to find corresponding sets of points, you
can use a few heuristics to help you find those corresponding sets. If an
object has a natural top and bottom, for example, the points near the top
and bottom in any image are likely to form corresponding sets.

Consider the model images and unknown shown in figure 26.13. As
before, the 30° and 60° images constitute the model to be checked against
the unknown. Earlier, you saw that you can use points P; and P, to find
« and S for the first unknown, using the following equations:

—2.83 = a(-2.73) + B(-2.73),
0 = a(0.73) + 8(—0.73).
Any other pair of points would do just as well, of course. Instead of using

Py and Py, the points along the top, you could use any two of Ps, Pg, and
Py, the points along the bottom, which produce the following equations:

2.83 = o(2.73) + B(2.73),
0=a(-0.73) + 5(0.73),
—2.83 = a(-2.73) + 5(-2.73).
Note that sums of equations are also equations. Thus, you can add together
the equations for the top points to get a new equation. Then, you can add

together the equations for the bottom points. Thus, you have two more
equations in a and 3:

(—2.83+0) = a(~2.73 + 0.73) 4+ B(—2.73 — 0.73),
(2.83 40— 2.83) = (2.73 — 0.73 — 2.73) + B(2.73 + 0.73 — 2.73).

Naturally, these new, composed equations have the same solution as do
the original equations involving P; and Py—namely, o = 0.518315 and
B = 0.518315. Thus, you can use corresponding sets of points to produce
equations in a and §, instead of corresponding points. Within the cor-
responding sets, you do not need to know exactly which point goes with
which point.

Still, even finding corresponding sets may be hard. For one thing, the
general case requires four sets of corresponding points, not just two. Also,
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Figure 26.13 It is sufficient
to find sets of corresponding
points; it is not necessary to
know exactly how the points
within the sets correspond.

you cannot always expect objects to have a natural standing posture that
enables you to identify top and bottom sets.

SUMMARY

The traditional approach to object identification involves image de-
scription, followed by surface description, followed by volume descrip-
tion, followed by matching with library models.

Amazingly, you can construct a two-dimensional identification tem-
plate using the two-dimensional image of the object to be identified,
plus a few stored two-dimensional image descriptions. Identification
becomes a matter of template matching.

You construct two-dimensional templates by using a few corresponding
points to establish position-prediction coefficients.

For pure rotation of a polyhedron around one axis, two corresponding
points in two images are sufficient to establish position-prediction coef-
ficients for an unknown object in a given image. For general polyhedron
rotation and translation, you need four points in three images.

When fully generalized, the template approach handles objects with
parts and objects with curved surfaces.

To use the template approach, you need to be able to identify corre-
sponding features in image sets. Fortunately, you need only to find
corresponding sets of points, rather than corresponding points. Some-
times, you can track points as they move, thus maintaining correspon-
dence, rather than establishing correspondence.
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BACKGROUND

Identification procedures in which a template is generated and matched to
an unknown are called alignment methods. The seminal alignment ideas
described in this chapter were developed by Shimon Ullman and Ronen
Basri [1989)].





