Learning by
Simulating
Evolution

In this chapter, you learn how search can be done using procedures
that are inspired by natural evolution. These procedures, commonly called
genetic algorithms, rest on ideas that are analogous, in some ways, to
individuals, mating, chromosome crossover, gene mutation, fitness, and
natural selection.

You learn that natural selection often performs terribly when simple
selection mechanisms are used. To do better, you need to devise a selection
mechanism that takes note of diversity among individuals, as well as of indi-
vidual performance. Such a diversity-noting selection measure can change
the way that you think about local maxima. Instead of trying to escape
from them, you populate them with sacrificial individuals who themselves
get trapped, but who keep other evolving individuals at a distance.

By way of illustration, you see how to construct a genetic algorithm
to optimize the quantities of flour and sugar used in the production of
cookies. This optimization problem is like many others for which overall
performance has a complicated dependence on various controllable factors
that include temperatures, pressures, flow rates, and the like.

First, you review the most conspicuous mechanisms involved in evolu-
tion. Then, you see how simple procedures may exhibit similar properties.

Once you have finished this chapter, you will know how genetic learning
procedures work, when they can be effective, and why they often break
down.
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SURVIVAL OF THE FITTEST

Every living thing consists of one or more cells, but beyond that, there
are exceptions to just about every rule in biology. Nevertheless, certain
characteristics of heredity and evolution seem to be universal or nearly so.
In this section, you learn about those characteristics.

Chromosomes Determine Hereditary Traits

In higher plants and animals, each cell contains a single nucleus, which,
in turn, contains chromosomes, often many of them. Late in the nine-
teenth century, chromosomes were identified as the custodians of the trait-
determining factors, traditionally called genes, that are passed on when
cells divide and when offspring are parented. Genes are strung along chro-
mosormes like cars on a railroad train.

The chromosomes are usually paired, with each parent contributing one
chromosome to each pair. The pairs are said to be homologous, meaning
that, for each gene in one paired chromosome, there is a gene in the other
corresponding chromosome that has the same purpose. Cells that contain
paired, homologous chromosomes are said to be diploid cells.

In preparation for mating, homologous chromosomes are brought to-
gether, duplicated, and formed into bundles that look a bit like four ropes
twisted together. Somehow, the twisting seems to produce stresses that
lead to a great deal of cleavage and reconnection, thereby scrambling the
genes on the chromosomes involved. This scrambling is called crossover.

Once duplication and crossover occur, there are two complete sets of
scrambled chromosome pairs. The sets are herded to opposite ends of
the nucleus, whereupon the nucleus divides, initiating the division of the
entire cell. The two resulting cells then have the normal number of chromo-
somes, but they are not ordinary because the chromosomes have undergone
crossover.

Next, the cells divide again; unlike in normal cell division, however,
there is no chromosome duplication. Instead, one chromosome from each
pair ends up in each of the two new cells. These new cells, either eggs or
sperm, are said to be haploid cells because, in contrast to diploid cells,
they exhibit no chromosome pairing.

Mating produces a fertilized, diploid egg, initiating the development
of a new individual. Subsequent cell division in the course of development
is much simpler. Chromosomes are copied, herded, and assigned to two
distinct cells, but there is no crossover.

Occasionally, the chromosome-copying process goes astray, producing
an altered gene that is slightly different from the corresponding gene in the
contributing parent. This never-before-seen gene is called a mutation.

If the purpose of the unmutated gene is to dictate the shape of, say,
a crucial enzyme, the mutated gene may dictate a better enzyme; more
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often, the mutated gene produces either no enzyme or one with greatly
diminished activity.

Fortunately, a bad mutation in one chromosome of a diploid pair need
not be fatal, because the other, homologous chromosome is generally nor-
mal. Inbreeding can lead to tragedy, however, because the same, defective
gene may end up on both of the two homologous chromosomes.

In lower plants and animals, chromosomes are paired only briefly, dur-
ing reproduction. Most often, reproduction involves just one parent, whose
chromosomes are copied in preparation for cell division, with the original set
of chromosomes going into one of the two new cells, and the copied set going
into the other. Occasionally, however, reproduction involves two parents,
each of which contributes a set of chromosomes to the other, whereupon
homologous chromosomes are paired, crossed, and separated in preparation
for cell division.

The Fittest Survive

In his magnum opus, The Origin of Species, published in 1859, Charles
Darwin championed the principle of evolution through natural selec-
tion, which subsequently, after much heated argument, became generally
accepted among scientists:

@ FEach individual tends to pass on its traits to its offspring.

m Nevertheless, nature produces individuals with differing traits.

m  The fittest individuals—those with the most favorable traits—tend to
have more offspring than do those with unfavorable traits, thus driving
the population as a whole toward favorable traits.

m  Over long periods, variation can accumulate, producing entirely new
species whose traits make them especially suited to particular ecological
niches.

Of course, every horse breeder knows that traits are passed on and that
traits vary; and every horse breeder arranges for faster horses to breed more.
Darwin’s contribution was to exhibit evidence that the same principles
account for the great variation seen in living things.

From a molecular point of view, natural selection is enabled by the
variation that follows from crossover and mutation. Crossover assembles
existing genes into new combinations. Mutation produces new genes, hith-
erto unseen.

GENETIC ALGORITHMS

In this section, you learn how it is possible to simulate certain characteris-
tics of heredity and evolution.
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Figure 25.1 Cookie quality
is dependent on the number
of kilograms of flour and 9 112|3|4(5|4|3([2]1
sugar per batch. Evidently,
the best-quality cookies are 8 2|8]4]5]|6]5/4/38)2
produced when there are five 7 3|4|5(6|7|6|5|4]|3
kilograms of each, for then the
judged quality of the cookies is 6 4/5/6|7|8|7|6|5)4
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4 4/5|6/7(8]7|6(5]|4
3 3 4(5(6|7|6[5[4]|3
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1 11231454321
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Flour
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Genetic Algorithms Involve Myriad Analogs

To understand natural selection from a computational point of view, con-
sider the problem faced by Kookie, a cookie maker, who is trying to opti-
mize the amount of sugar and flour in his cookies.

Essentially, Kookie is trying to find the optimal combination in the
two-dimensional space illustrated in figure 25.1. One axis is the number of
kilograms of flour per batch, and the other is the number of kilograms of
sugar; the quality of the resulting cookies, somehow determined, is given as
a function of the other two. In this example, the quality function resembles
a smooth bump.

In this illustration, Kookie could, of course, just try every combination,
noting that there are only 81, but as the number of options is increased,
or as the number of dimensions is increased, brute-force testing eventually
becomes impracticable.

Accordingly, assume Kookie wants to find a good combination without
trying every combination. Kookie could try one of the search procedures
described in Chapter 4. Assume, however, that Kookie is studying artificial
intelligence, and he has just learned that search can be performed using
genetic algorithms. Inspired by the miracle of evolution, Kookie decides
to try a genetic algorithm on his cookie problem.
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Figure 25.2 A chromosome
in the cookie world consists

Kilograms of flour Kilograms of sugar
of two numbers, which act
as gene analogs. The first x‘ J
determines how much flour to
use; the second determines 5 1
how much sugar to use.

To begin, Kookie has to develop analogs to individuals, chromosomes,
mutation, crossover, fitness, and natural selection. Analogs for individuals,
chromosomes, mutation, and crossover are straightforward, and are easy
for Kookie to establish. Kookie first decides that each batch of cookies
is an “individual.” Then he decides, as illustrated in figure 25.2, that a
“chromosome” consists of two “genes,” each of which is a number from 1
to 9. The first of these genes prescribes the amount of flour to use, and
the second prescribes the amount of sugar. Kookie appears, therefore, to
be adhering to the following specification:

A chromosome is a representation
In which
> There is a list of elements called genes.

> The chromosome determines the overall fitness manifested
by some mechanism that uses the chromosome’s genes as
a sort of blueprint.

With constructors that

> Create a chromosome, given a list of elements—this con-
structor might be called the genesis constructor

> Create a chromosome by crossing a pair of existing chro-
mosomes

With writers that

> Mutate an existing chromosome by changing one of the
genes

With readers that

> Produce a specified gene, given a chromosome

Next, Kookie decides that each individual will have only one copy of one
chromosome, thus following the pattern of lower plants and animals whose
chromosomes have no homologous partners except during mating.

To mimic chromosome mutation, Kookie selects one of the chromo-
some’s two genes randomly, and alters it randomly by adding or subtracting
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1, taking care to stay within the 1-to-9 range. Figure 25.3 illustrates how
two chromosomes might evolve through a series of four extremely lucky
mutations, producing increasingly high-quality individuals.

Strictly speaking, individuals, which correspond to cookie batches, are
the entities that are associated with quality. Chromosomes, which cor-
respond to recipes for the flour and sugar contents of cookies, determine
quality indirectly by specifying the characteristics of the individuals. Nev-
ertheless, it is not necessary to be obsessive about the distinction, because
the characteristics of individuals are so tightly determined by the nature
of the chromosomes. Accordingly, in the rest of this chapter, chromosomes
are said to have certain quality scores, rather than to produce individuals
that have those quality scores. Similarly, chromosomes are said to consti-
tute populations, even though it is really the chromosome-determined
individuals that constitute populations.

To mimic the crossover involved in mating, Kookie cuts two chromo-
somes in the middle and rejoins them as illustrated in figure 25.4. Then,
Kookie retains both in the hope that at least one will be a fortunate combi-
nation. For cookies, the 5-4 chromosome is the fortunate combination, for
a 5-4 chromosome is just one mutation step away from the 5-5 combina-
tion which yields optimum, quality 9 cookies. On the other hand, the 2-1
chromosome is the unfortunate combination, for a 2-1 chromosome yields
horrible, quality 2 cookies.

Of course, with just two genes, there is just one place to cut and re-
Join; in general, however, there are many places, and many possible proce-
dures for determining how many places to crossover and where exactly to
crossover.

The Standard Method Equates Fitness with Relative Quality

Once Kookie has decided how to mimic mutation and crossover, he must
decide on analogs to “fitness” and “natural selection.” These choices are far
less straightforward, however, for there are many alternative approaches.

In general, the fitness of a chromosome is the probability that the chro-
mosome survives to the next generation. Accordingly, you need a formula
that relates the fitness of the ith chromosome, f;, a probability ranging
from 0 to 1, to the quality of the corresponding cookies, ¢;, a number
ranging from 1 to 9. The following formula, in which the sum is over all
candidates, is one possibility:

q
=
' Z]‘ 4
Henceforth, the use of this formula is referred to as the standard method
for fitness computation.
Suppose, for example, that a population consists of four chromosomes,
collectively exhibiting 1-4, 3-1, 1-2, and 1-1 chromosomes. By inspecting
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Figure 25.3 Two chromo-
somes undergoing a series

of mutations, each of which
changes one gene by adding
or subtracting 1. Both original
chromosomes are 1-1 chromo-
somes, which produce quality
1 cookies. One final chromo-
some is a 5-1 chromosome and 2 1 1 2
the other is a 2-4 chromosome,
both of which yield quality 5
CooKies.

3 1 1 3
4 1 1 4
5 1 2 4

figure 25.1, you can see that their qualities and corresponding fitnesses are
as shown in the following table:

Chromosomes Quality Standard

fitness
14 4 0.40
31 3 0.30
12 2 0.20
11 1 0.10

With a fitness analog established, one way that Kookie can mimic natural
selection is as follows:
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Figure 25.4 Two chromo-

somes undergoing crossover,

each of which is cut in the mid- 5 1
dle and reattached to the other

chromosome. One of the two

original chromosomes is a 5- 2 4

1 chromosome, and the other
is a 2-4 chromosome. One of

the two new chromosomes is a

5-4 chromosome, which yields

ality 8 cookies.
quality 8 cookies 5 ]
2 4
5 4
2 1

To mimic natural selection in general,

> Create an initial “population” of one chromosome.

> Mutate one or more genes in one or more of the current
chromosomes, producing one new offspring for each
chromosome mutated.

> Mate one or more pairs of chromosomes.

> Add the mutated and offspring chromosomes to the
current population.

> Create a new generation by keeping the best of the cur-
rent population’s chromosomes, along with other chro-
mosomes selected randomly from the current popula-
tion. Bias the random selection according to assessed
fitness.
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Genetic Algorithms Generally Involve Many Choices

Even after Kookie decides to deploy a genetic algorithm using the standard
method for computing fitness, many decisions remain.

m How many chromosomes are to be in the population? If the number is
too low, all chromosomes will soon have identical traits and crossover
will do nothing; if the number is too high, computation time will be
unnecessarily excessive.

m  What is the mutation rate? If the rate is too low, new traits will appear
too slowly in the population; if the rate is too high, each generation
will be unrelated to the previous generation.

m s mating allowed? If so, how are mating pairs selected, and how are
crossover points determined?

m Can any chromosome appear more than once in a population?

Generally speaking, it is helpful to know the shape of the space to be
searched, which is a variant of the principle that it is always nice to know
the answer before you work the problem.

It Is Easy to Climb Bump Mountain Without Crossover

Recall that the problem is to find an optimum mix of ingredients given the
relation between cookie quality and ingredients shown in figure 25.1.

To keep method comparison simple, suppose that Kookie decides to
specialize the general method for mimicking natural selection as follows:

m Kookie starts with a single chromosome located at 1-1.

m  No chromosome is permitted to appear more than once in each gener-
ation.

@ A maximum of four chromosomes survive from one generation to the
next.

m Each survivor is a candidate for survival to the next generation, along
with any new chromosomes produced.

m One gene is selected at random in each of the survivors, and is mutated
at random. If the mutant is different from any candidate accumulated
so far, that mutant is added to the candidates.

m  There is no crossover.

The chromosome with the highest score survives to the next generation.

@ The remaining survivors from one generation to the next are selected
at random from the remaining candidates, according to the standard
method for fitness computation.

Now recall that Kookie not only wants good cookies, but also wants to learn
more about how genetic algorithms work. Accordingly, he might propose
to improve his cookies 1000 times, starting from a single 1-1 chromosome
each time.

If Kookie were to go to all that trouble, he would find the best com-
bination of ingredients, on average, at generation 16. Among 1000 sim-
ulation experiments performed by Kookie, the luckiest produced the best
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combination eight generations after starting at generation 0 with a one 1-1
chromosome, which produces quality 1 cookies:

Generation 0:
Chromosome  Quality
11 1

A favorable mutation produced a 1-2 chromosome, which was added to the
population, producing two members:

Generation 1:
Chromosome  Quality
12 2

11 1

The 1-2 chromosome mutated to 1-3, which was added to the population.
The 1-1 chromosome mutated to 1-2, which was already in the population.
Accordingly, the next generation had just one new member:

Generation 2:
Chromosome  Quality

13 3
12 2
11 1

Now 1-3 mutated to 1-4; 1-2 mutated to 2-2; and 1-1 mutated to 2-1. For
the first time, the population exceeded the four-chromosome population
limit. Hence, the best plus three more chromosomes had to be selected
from the following six:

Chromosome  Quality
14 4

22
13
21
12
11

= NN W W

The four that happened to be selected, using the standard fitness method,
were as follows:

Generation 3:
Chromosome  Quality

14 4
13 3
12 2
21 2

Now mutation produced three new chromosomes:
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Chromosome  Quality

24 5
23 4
31 3

From the total of seven, four were selected for the next generation:

Generation 4:
Chromosome  Quality

24 5
14 4
13 3
21 2

Next, all chromosomes mutated, and the new chromosomes happened to
be selected for the next generation:

Generation 5:
Chromosome  Quality

25 6
15 5
23 4
22 3

Once again, all chromosomes mutated, but this time one of the existing
chromosomes—the 1-5 chromosome—survived to the next generation:

Generation 6:
Chromosome  Quality

35 7
15 5
32 4
14 4

This time, 3-5 mutates to 4-5, and 3-2 mutated to 3-1. The other two—1-5
and 1-4—happened to mutate into each other. Accordingly, four chromo-
somes had to be selected from the following six:

Chromosome  Quality
45
35
15
32
14
31

W > W O =3 00
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These were selected:

Generation 7:
Chromosome  Quality

45 8
15 )
14 4
31 3

Now 4-5 mutated into 5-5, the optimum, terminating the experiment with
the optimum chromosome included in the population:

Generation 8:
Chromosome  Quality

55 9
45 8
25 6
21 2

Evidently, for straightforward bumplike terrain, crossover is not at all nec-
essary.

Crossover Enables Genetic Algorithms to
Search High-Dimensional Spaces Efficiently

Now suppose Kookie wants to see whether crossover does any good. To
decide which chromosomes to cross, Kookie proceeds as follows:

m  Kookie considers only the chromosomes that survived from the previous
generation.

B For each such chromosome, Kookie selects a mate from among the
other survivors. Mate selection is done at random, in keeping with the
standard method for computing fitness.

®  Each mating pair is crossed in the middle, producing two crossed, off-
spring chromosomes. If an offspring chromosome is different from any
candidate accumulated so far, that offspring chromosome is added to
the candidates.

Using this crossover method, Kookie finds the best combination of ingre-

dients on bump mountain, on average, at generation 14, two generations

sooner than without crossover.

The reason for this speedup is that crossover can unite an individual
that is doing well in the flour dimension with another individual that is
doing well in the sugar dimension. If crossover carries a good flour gene
and a good sugar gene into a new individual, the new individual has two
good genes. )

For this crossover improvement to work, of course, the search space
must be such that you can search the global maximum by searching for the
maximum in each dimension independently. Essentially, crossover reduces
the dimensionality of the search space.
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Figure 25.5 In this example,

the function relating cookie
quality to cookie ingredients
exhibits a moat. Crossover
helps you to jump over.

9 1/2|3[4|5|4|3|2/(1
8 2(0l0/0|0]|0|0{0|2
7 3|o0/0|0|0}l0|0]|0]|3
6 4|0|0|7|8]7]|0]|0]|4
Sugar 5 5/0/o0|8(9|8|0[0}5
4 4/0|0|7|8|7]0|0]|4
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2 2lo0lo0|0|0|l0j0j0])2
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1 2 3 45 6 7 89
Flour
Moat mountain

Crossover Enables Genetic Algorithms to
Traverse Obstructing Moats

Suspending disbelief, suppose the relation between cookie quality and in-
gredients is given by the moatlike function in figure 25.5. Under these
circumstances, it is not possible for a series of random mutations to lead
a population from outside the moat to inside given just one mutation per
generation. The reason is that the necessary intermediate chromosomes—
the ones producing cookies in the moat—have 0 quality, and hence O fitness,
and hence 0 chance of surviving to the next generation.

On the other hand, given two well-situated parents, with 1-5 and 5-
1 chromosomes, a single mating can create a trans-moat offspring. No
zero-fitness intermediates ever need to survive. Evidently, for terrain with
moats, crossover can be more than just helpful.

Unfortunately, Kookie still does extremely poorly on moat mountain,
even after adding a crossover to each generation, because the population
as a whole tends to crawl along the flour axis or up the sugar axis, with all
four chromosomes bunching up with 5-1 chromosomes or 1-5 chromosomes.
Mutations into the moat die immediately. Mutations that take a chromo-
some toward 1-1 and beyond tend to die before they get to a favorable
position for crossover.
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When Kookie tried 1000 times to find the optimum starting with a 1-1
chromosome, he found the best combination, on average, only after 155
generations.

The Rank Method Links Fitness to Quality Rank

The standard method for determining fitness provides you with no way to
influence selection. One alternative is to use the rank method, which not
only offers a way of controlling the bias toward the best chromosome, but
also eliminates implicit biases, introduced by unfortunate choices of the
measurement scale, that might otherwise do harm.

Basically, the rank method ignores quality measurements except inso-
far as those measurements serve to rank the candidates from the highest
quality to the lowest quality. Then, the fitness of the highest-quality can-
didate among the ranked candidates is some fixed constant, p. If the best
candidate, the one ranked number 1, is not selected, then the next best
candidate, the one ranked number 2, is selected with fitness p. This se-
lection process continues until a candidate is selected or there is only one
left, in which case that last-ranked candidate is selected, as indicated in
the following procedure:

To select a candidate by the rank method,
> Sort the n individuals by quality.

> Let the probability of selecting the ith candidate, given
that the first i — 1 candidates have not been selected, be
p, except for the final candidate, which is selected if no
previous candidate has been selected.

> Select a candidate using the computed probabilities.

Suppose, for example, that p = 0.667. Next, assume you are interested in
the same chromosomes—1-4, 3-1, 1-2, and 1-1—used before to illustrate the
standard method, but this time in the context of moat mountain. Further
assume that those four chromosomes are augmented by 7-5, which produces
quality O cookies on moat mountain. The following table and figure 25.6
show the chromosomes’ rank fitnesses, along with their standard fitnesses
for comparison.

Chromosome Quality Rank Standard Rank

fitness fitness
14 4 1 0.40 0.667
31 3 2 0.30 0.222
12 2 3 0.20 0.074
11 1 4 0.10 0.025
75 0 5 0.0 0.012
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Figure 25.6 Fitnesses for five
chromosomes, as measured

by both the standard method
and the rank method, using
quality scores as determined by
moat mountain. In contrast to
the standard method, the rank
method shows nonzero fitness
for all chromosomes, even for
the one that produces quality 0
cookies.

Probability

Standard method

14

Probability

31 12 11
Chromosomes

75

Quality rank method

14

31 12 11
Chromosomes

75

When Kookie tried 1000 times to find the optimum, using the rank method,

starting with a 1-1 chromosome,
age, after 75 generations. Thus,
improvement, on the moat-mountain problem,

which takes, on average, 155 generations.

Unfortunately, 75 generations is still a lot throug
four chromos

he found the best combination, on aver-
the rank method provides a considerable
over the standard method,

h which to work. All
omes still tend to bunch up around either the 5-1 chromosome
or the 1-5 chromosomes. Now, however, it is possibl
0-quality moat, because the lowest fitness of any

e to tunnel through the
chromosome is determined

indirectly, by quality rank, rather than directly, by quality score. Accord-

ingly, no chromosome can have a fitness o

method, chromosomes in the moat have a fitness of exactly 0.

SURVIVAL OF THE MOST DIVERSE

Fitness, as measured so far, ignores

as the degree to which chromosomes exhibit different genes. Accordingly,

f 0, whereas with the standard

diversity, which you can think of



520

Chapter

25 Learning by Simulating Evolution

chromosomes tend to get wiped out if they score just a bit lower than does
a chromosome that is close to the best current chromosome. Even in large
populations, the result is uniformity.

On a larger scale, however, unfit-looking individuals and species in
nature survive quite well in ecological niches that lie outside the view of
other, relatively fit-looking individuals and species:

The diversity principle:
> It can be as good to be different as it is to be fit.

In this section, you learn that being different can be incorporated into an
overall measurement of fitness, and you learn that this observation creates
a different perspective on what to do with local maxima.

The Rank-Space Method Links Fitness to Both
Quality Rank and Diversity Rank

When you are selecting chromosomes for a new generation, one way to
measure the diversity that would be contributed by a candidate chro-
mosome is to calculate the sum of the inverse squared distances between
that chromosome and the other, already selected chromosomes. Then, the
diversity rank of a chromosome is determined by that inverse squared

distance sum:
1
23
1 1
Consider again the set of six candidates that include 5-1, 1-4, 3-1, 1-2,

1-1, and 7-5. The highest-scoring candidate is 5-1. Ranking the other five
by quality and inverse squared distances to 5-1 yields the following table:

Chromosome  Score 51; Diversity  Quality
rank rank

14 4 0.040 1 1

31 3 0.250 5 2

12 2 0.059 3 3

11 1 0.062 4 4

75 0 0.050 2 5

One simple way to combine rank by quality and rank by diversity into
a combined rank is to rank each chromosome according to the sum of its
quality rank and its diversity rank using one or the other of the two rankings
to break ties, as indicated in the following procedure:
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Figure 25.7 Rank space
enables two chromosomes to
be compared in both quality
and diversity.

4 11
Quality
rank

3 12

2 \
Best corner:
high quality
high diversity

2 3 4 5

Diversity rank

To select a candidate by the rank-space method,
> Sort the n individuals by quality.

> Sort the n individuals by the sum of their inverse squared
distances to already selected candidates.

> Use the rank method, but sort on the sum of the quality
rank and the diversity rank, rather than on quality rank.

Figure 25.7 illustrates this procedure. With diversity rank given by one
axis and quality rank by another, it is natural to call the diagram a rank
space, and to refer to the method as the rank-space method. Clearly,
it is best to be in the lower-left corner of rank space, where a chromosome
will be if it ranks well in terms of both quality and diversity.

Next, with a combined rank that combines the influence of quality and
diversity, selection can be done as before, setting the fitness of the first
candidate to p. Thus, the rank sum, combined rank, and fitnesses for the
five chromosomes is given by the following table. Note that there is a rank-
sum tie between 3-1 and 7-5. To break the tie, you judge the chromosome
with the better diversity rank to have a better combined rank.
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Figure 25.8 Fitnesses for five
chromosomes, as measured Probability
by the quality-rank method and
the rank-space method, using
the qualities provided by moat
mountain. In contrast to both
the standard method and the
rank method, the rank-space
method takes diversity into

account.
L

Quality rank method

14 31 12 11 75
Chromosomes

Probability

Rank space method

14 31 12 11 75
Chromosomes

Chromosome Rank sum Combined rank Fitness

14 2 1 0.667
31 7 4 0.025
12 6 2 0.222
11 8 5 0.012
75 7 3 0.074

Figure 25.8 compares fitness measured by combined rank with fitness mea-
sured by quality rank.

Suppose that the most probable chromosome—the 1-4 chromosome—is
selected to accompany the 5-1 chromosome into the next generation. Two
more remain to be selected. Now, however, the next one selected should be
far from both 5-1 and 1-4. Accordingly, instead of measuring the inverse
squared distance to just one reference chromosome, you sum the inverse
squared distances from both reference chromosomes, 5-1 and 1-4. At this
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point, the rank sums are all the same, but using diversity rank as the tie
breaker yields the following table:

Chromosome )P Elg' Diversity Quality Combined Fitness
%

rank rank rank
31 0.327 4 1 4 0.037
12 0.309 3 2 3 0.074
11 0.173 2 3 2 0.222
75 0.077 1 4 1 0.667

Again suppose that the most probable chromosome—this time the 7-5
chromosome—is selected to accompany the 5-1 and 1-4 chromosomes into
the next generation. Then, the ranks relevant to the final choice are de-
termined by the following table; again, you break the rank-sum ties by
appealing to diversity rank as the tie breaker. This time, 1-1 is the most
probable chromosome:

Chromosome 3 31; Diversity  Quality =~ Combined Fitness
k3

rank rank rank
31 0.358 3 1 3 0.111
12 0.331 2 2 2 0.222
11 0.190 1 3 1 0.667

Figure 25.9 illustrates how all this computation is progressing. Note that
the rank-space method tends to maintain diversity relative to the standard
method, which would never select 7-5, and to the plain rank method, which
would select 7-5 last, rather than third.

In summary, if you assume that the most probable chromosome is se-
lected at each point following the automatic selection of the highest scoring
chromosome, 5-1, then 1-4, 7-5, and 1-1 are selected for the next genera-
tion, in that order. Had you just examined quality alone, then the order
would have been 5-1, 1-4, 3-1, and 1-2.

The Rank-Space Method Does Well on Moat Mountain

If Kookie were to try 1000 times to find the optimum, using the rank-space
method, starting with a 1-1 chromosome and p = 0.66, he would find the
best combination, on average, after about 15 generations. Thus, the rank-
space method provides a considerable improvement, on the moat problem,
over both the standard method and the rank method. The following table
summarizes the improvement:
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Among 1000 simulation experiments performed by Kookie using the rank-
space method, the luckiest produced the best combination after just seven
generations, after starting at generation 0 with one 1-1 chromosome, which
produces quality 1 cookies:

Generation 0:
Chromosome  Quality
11 1

At this point, a favorable mutation produced a 2-1 chromosome, which was
added to the population, producing two members. Crossover did not add
anything during this generation, because there was just one chromosome:

Generation 1:
Chromosome  Quality
21 2

11 1

Next, mutation added a 3-1 chromosome. Crossover did not add anything
during this generation, because both chromosomes in the current popula-
tion had the same second gene, a 1.
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Generation 2:
Chromosome  Quality

31 3
21 2
11 1

Next, mutation added a 2-2 chromosome and a 4-1 chromosome. Again,
crossover added nothing. Of the existing and mutated chromosomes, the
9.1 chromosome was lost in forming the third generation:

Generation 3:
Chromosome  Quality

41 4
31 3
11 1
22 0

At this point, mutation produces three new chromosomes: 5-1, 1-2, and 2-
3. Crossover of the 2-2 and 4-1 chromosomes produced a 2-1 chromosome
and a 4-2 chromosome. All the rest of the mutation and crossover results
were already in the current population. Accordingly, the next generation
was selected from nine chromosomes:

Chromosome  Quality
41
31
11
22
51
12
23
21
42

OO NO - Wk

Of these, the following were retained:

Generation 4:
Chromosome  Quality

51 5
31 3
12 2
23 0

Now 5-1 mutated to 6-1, 1-2 mutated to 2-2, 3-1 mutated to 3-2, and 2-3
mutated to 2-4. Also, various crossovers yielded five new chromosomes,
2-1, 1-1, 5-2, 3-2, and 5-3. Accordingly, the next generation was selected
from 13 possibilities:
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Chromosome  Quality
51 5

31
12
23
61
22
32
24
21
11
52
32
53

SO R NOOORONW

o

Of these, four were selected for the next generation, as usual:

Generation 5:
Chromosome  Quality

51 5
31 3
12 2
24 0

For the next generation, there was a considerable improvement as a conse-
quence of mating 5-1 with 2-4, which led to a 5-4 chromosome in the next
generation:

Generation 6:
Chromosome  Quality

54 8
14 4
31 3
12 2

Finally, 5-4 mutated to 5-5 in the final generation:

Generation 7:
Chromosome  Quality

55 9
14 4
12 2
52 0

Figure 25.10 shows graphically how this evolution occurred. Note that the
rank-space method tends to keep the chromosomes apart. Because there is
some randomness in the selection of candidates, however, some bunching
still occurred.
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Figure 25.10 The
results of a lucky
experiment using the
rank-space method.
The optimum point was
found in the seventh

generation.
A

Local Maxima Are Easier to Handle when
Diversity Is Maintained

Most approaches to search take the position that local maxima are traps.
Accordingly, some approaches involve trap-escaping mechanisms such as
backtracking and initially large, ever-shrinking step size. Other approaches
involve parallel search with a large number of random starting positions
in the hope that one of the paraliel searches will get trapped on the local
maximum that happens to be the global maximum as well.

In contrast, if a genetic algorithm treats diversity as a component of
fitness, then some of the individuals in a population tend to hover around
already-discovered local maxima in quality or diversity, driving off other,
still peripatetic, individuals. As long as there are enough individuals to
populate all the local maxima sufficiently, there is a reasonable chance that
one individual will find its way to the global maximum.

The populate-and-conquer principle:

> Local maxima should be populated, not avoided, when
you are seeking a global maximum.

SUMMARY

m One way to learn may be to imitate natural evolution, using the notion
that survival is biased toward the fittest to guide a massive search.
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m Chromosomes determine hereditary traits. Genetic learning algorithms
modify analogs to chromosomes through analogs to mutation and mat-
ing, thus creating new individuals that may be fitter than their parents.

m The standard method for determining fitness equates fitness to a mea-
sure of quality. The rank method links fitness to quality rank, thus
preventing the particular scale used to measure quality from having
deleterious effects.

® The rank-space method links fitness to both quality rank and diver-
sity rank, thus promoting not only the survival of individuals that are
extremely fit from the perspective of quality, but also the survival of
individuals that are both quite fit and different from other, even more
fit individuals.

m It can be as good to be different as it is to be fit. When diversity
is maintained, local maxima can be populated, rather than avoided
altogether. By embodying this idea, the rank-space method solves
problems that are beyond both the standard method and the rank
method.

BACKGROUND

The Origin of Species is considered to be among the most influential sci-
entific works of all time [Charles Darwin 1859].

Recently, new light has been shed on evolution by scientists equipped
with ideas that have emerged with the dawn of the computer age. In
particular, the idea of the importance of neutral mutations is becoming
more appreciated. See, for example, the work of Motoo Kimura [1983].

John Holland is one of the pioneers of modern work on natural adap-
tation algorithms, and is a frequent contributor to the literature [1975,
1986].

An important paper by Jim Antonisse [1989] corrects a long-standing
supposition that binary representations are best for genetic algorithms.

Michael de la Maza and Bruce Tidor show how time-varying selec-
tive pressure provides a way to maintain diversity on a variety of sample
optimization problems, including problems of protein recognition [1991}.

A fascinating account of how the speed of evolution can be increased
using coevolving parasites appears in a paper by W. Daniel Hillis [1990].

To learn about molecular biology in detail, you should read the com-
prehensive textbook volumes by James D. Watson et al. [1987].





