Semantic Nets and
Description Matching

In this chapter, you learn about the role of representation in artificial
intelligence, and you learn about semantic nets, one of the most ubiquitous
representations used in artificial intelligence. You also learn about describe
and match, an important problem-solving method.

By way of illustration, you see how one describe-and-match program,
working on semantic-net descriptions, can solve geometric analogy prob-
lems of the sort found on intelligence tests. You also see how another
describe-and-match program, again working on semantic-net descriptions,
can recognize instances of abstractions, such as “mixed blessing” and “re-
taliation,” in semantic nets that capture story plots. The piece de résistance
involves the analysis of O. Henry’s intricate short story, “The Gift of the
Magi.” Both the analogy program and the abstraction program show that
simple descriptions, conforming to appropriate representations, can lead to
easy problem solving.

Also, you see that the describe-and-match method is effective with
other representations, not just with semantic nets. In particular, you see
how the describe-and-match method lies underneath the feature-based ap-
proach to object identification.

Once you have finished this chapter, you will know how to evaluate
representations and you will know what representation-oriented questions
you should always ask when you are learning how to deal with an unfamiliar
class of problems. You will have started your own personal collection of
representations and problem-solving methods by learning about semantic

15

16

Chapter

2 Semantic Nets and Description Matching

nets, feature spaces, and the describe-and-match method. Finally, you will
have started your own personal collection of case studies that will serve as
useful precedents when you are confronted with new problems.

SEMANTIC NETS

In this section, you learn about what a representation is, a sense in which
most representations are equivalent, and criteria by which representations
can be judged. You also learn about semantic nets, a representation that
sees both direct and indirect service throughout artificial intelligence.

Good Representations Are the Key to Good Problem Solving

In general, a representation is a set of conventions about how to de-
scribe a class of things. A description makes use of the conventions of a
representation to describe some particular thing.

Finding the appropriate representation is a major part of problem solv-
ing. Consider, for example, the following children’s puzzle:

The Farmer, Fox, Goose, and Grain
A farmer wants to move himself, a silver fox, a fat goose, and some
tasty grain across a river. Unfortunately, his boat is so tiny he can
take only one of his possessions across on any trip. Worse yet, an
unattended fox will eat a goose, and an unattended goose will eat
grain, so the farmer must not leave the fox alone with the goose or
the goose alone with the grain. What is he to do?

Described in English, the problem takes a few minutes to solve because you
have to separate important constraints from irrelevant details. English is
not a good representation.

Described more appropriately, however, the problem takes no time at
all, for everyone can draw a line from the start to the finish in figure 2.1
instantly. Yet drawing that line solves the problem because each boxed
picture denotes a safe arrangement of the farmer and his possessions on the
banks of the river, and each connection between pictures denotes a legal
crossing. The drawing is a good description because the allowed situations
and legal crossings are clearly defined and there are no irrelevant details.

To make such a diagram, you first construct a node for each way the
farmer and his three possessions can populate the two banks of the river.
Because the farmer and his three possessions each can be on either of the
two river banks, there are 2173 = 16 arrangements, 10 of which are safe
in the sense that nothing is eaten. The six unsafe arrangements place an
animal and something the animal likes to eat on one side, with the farmer
on the other.

Good Representations Are the Key to Good Problem Solving

17

Farmer
Goose
Grain > Grain
== T T
Farmer |g Fox
Fox
Goose
Farmer
Fox Farmer
Goose Fox Fox BN Farmer
~Grain__ | ”| _Grain Grain__ ~Goose |7 _Goose | 7|~
—_— —— = e —= —=
€« Famer |¢| Goose Farmer Fox < Farmer
Goose Fox Grain Fox
Grain Goose
Grain
Farmer
Fox
Fox > Goose
— Y
—_—— —_—=
Farmer |g | Grain
Goose
Grain

Figure 2.1 The
problem of the farmer,
fox, goose, and grain.
The farmer must get
his fox, goose, and
grain across the river,
from the arrangement
on the left to the
arrangement on the
right. His boat will hold
only him and one of

his three possessions.
T

using a bad representation, is a brick wall preventing problem solving.

The second and final step is to draw a link for each allowable boat
trip. For each ordered pair of arrangements, there is a connecting link if
and only if the two arrangements meet two conditions: first, the farmer
changes sides; and second, at most one of the farmer’s possessions changes
sides. Because there are 10 safe arrangements, there are 10 x9 = 90 ordered
pairs, but only 20 of these pairs satisfy the conditions required for links.

Evidently, the node-and-link description is a good description with
respect to the problem posed, for it is easy to make, and, once you have it,
the problem is simple to solve.
The important idea illustrated by the farmer, fox, goose, and grain
problem is that a good description, developed within the conventions of a
good representation, is an open door to problem solving; a bad description,

18

Chapter 2 Semantic Nets and Description Matching

In this book, the most important ideas—such as the idea that a good
representation is important—are called powerful ideas; they are high-
lighted thus:

The representation principle:

> Once a problem is described using an appropriate repre-
sentation, the problem is almost solved.

In the rest of this book, you learn about one or two powerful ideas per
chapter.

Good Representations Support Explicit,
Constraint-Exposing Description

One reason that the node-and-link representation works well with the
farmer, fox, goose, and grain problem is that it makes the important objects
and relations explicit. There is no bothering with the color of the fox or
the size of the goose or the quality of the grain; instead, there is an ex-
plicit statement about safe arrangements and possible transitions between
arrangements.

The representation also is good because it exposes the natural con-
straints inherent in the problem. Some transitions are possible; others are
impossible. The representation makes it easy to decide which is true for
any particular case: a transition is possible if there is a link; otherwise, it
is impossible.

You should always look for such desiderata when you evaluate repre-
sentations. Here is a list with which you can start, beginning with the two
ideas just introduced:

Good representations make the important objects and relations ex-
plicit: You can see what is going on at a glance.

m They expose natural constraints: You can express the way one object
or relation influences another.

® They bring objects and relations together: You can see all you need to

see at one time, as if through a straw.

They suppress irrelevant detail: You can keep rarely used details out

of sight, but still get to them when necessary.

They are transparent: You can understand what is being said.

They are complete: You can say all that needs to be said.

They are concise: You can say what you need to say efliciently.

They are fast: You can store and retrieve information rapidly.

They are computable: You can create them with an existing procedure.

Semantic Nets Convey Meaning 19

A Representation Has Four Fundamental Parts

With the farmer, fox, goose, and grain problem as a point of reference, you
can now appreciate a more specific definition of what a representation is.
A representation consists of the following four fundamental parts:

m A lexical part that determines which symbols are allowed in the rep-
resentation’s vocabulary

® A structural part that describes constraints on how the symbols can
be arranged

B A procedural part that specifies access procedures that enable you
to create descriptions, to modify them, and to answer questions using
them

®m A semantic part that establishes a way of associating meaning with
the descriptions

In the representation used to solve the farmer, fox, goose, and grain prob-
lem, the lexical part of the representation determines that nodes and links
are involved. The structural part specifies that links connect node pairs.
The semantic part establishes that nodes correspond to arrangements
of the farmer and his possessions and links correspond to river traver-
sals. And, as long as you are to solve the problem using a drawing, the
procedural part is left vague because the access procedures are some-
where in your brain, which provides constructors that guide your pencil
and readers that interpret what you see.

Semantic Nets Convey Meaning

The representation involved in the farmer problem is an example of a
semantic net.

From the lexical perspective, semantic nets consist of nodes, denoting
objects, links, denoting relations between objects, and link labels that
denote particular relations.

From the structural perspective, nodes are connected to each other
by labeled links. In diagrams, nodes often appear as circles, ellipses, or
rectangles, and links appear as arrows pointing from one node, the tail
node, to another node, the head node.

From the semantic perspective, the meaning of nodes and links depends
on the application.

From the procedural perspective, access procedures are, in general, any
one of constructor procedures, reader procedures, writer proce-
dures, or possibly erasure procedures. Semantic nets use constructors
to make nodes and links, readers to answer questions about nodes and
links, writers to alter nodes and links, and, occasionally, erasers to delete
nodes and links.

By way of summary, the following specifies what it means to be a
semantic net in lexical, structural, semantic, and procedural terms, using

20

Chapter

2 Semantic Nets and Description Matching

an informal specification format that appears throughout the rest of this
book:

A semantic net is a representation
In which

> Lexically, there are nodes, links, and application-specific
link labels.

> Structurally, each link connects a tail node to a head node.

> Semantically, the nodes and links denote application-specific
entities.

With constructors that
> Construct a node

> Construct a link, given a link label and two nodes to be
connected

With readers that

> Produce a list of all links departing from a given node
> Produce a list of all links arriving at a given node

> Produce a tail node, given a link

> Produce a head node, given a link

> Produce a link label, given a link

Such specifications are meant to be a little more precise and consistent
than ordinary English phrases, but not stuffily so. In particular, they are
not so precise as to constitute a specification of the sort you would find in
an official standard for, say, a programming language.

Nevertheless, the specifications are sufficiently precise to show that
many of the key representations in artificial intelligence form family groups.
Figure 2.2, for example, shows part of the family of representations for
which the semantic-net representation is the ultimate ancestor. Although
this semantic-net family is large and is used ubiquitously, you should note
that it is but one of many that have been borrowed, invented, or reinvented
in the service of artificial intelligence.

There Are Many Schools of Thought About the
Meaning of Semantics

Arguments about what it means to have a semantics have employed philoso-
phers for millennia. The following are among the alternatives advanced by
one school or another:

® Equivalence semantics. Let there be some way of relating descrip-

tions in the representation to descriptions in some other representation
that already has an accepted semantics.

There Are Many Schools of Thought About the Meaning of Semantics 21

Figure 2.2 Part of the
semantic-net family of

representations. Although many E\
programs explained in this book
use one of the family members P\ A
shown, others use important Identification

Labelled:drawing Intg'rval net

representations that lie outside ~tree))
of the famil Arithmetic
y.— / Contraction net constraint

o n
Decision Game 5 ot

\ tre tree
Search Goal

tree /tree Value propagation net

Frame system State_“pace

B Procedural semantics. Let there be a set of programs that operate
on descriptions in the representation. Say that meaning is defined by
what the programs do.

m Descriptive semantics. Let there be explanations of what descrip-
tions mean in terms we understand intuitively.

From the perspective of descriptive semantics, the net on the left side of
figure 2.3 is not a semantic net, because there is neither a prima facie
description in terms you understand nor an explanation of what the link
labels mean in terms you understand. The net on the right side of figure 2.3,
however, is a semantic net, because you naturally tend to ascribe meaning
to the links. Asked what the net means, most people would say immediately
that it means that an object, known as the lintel, is supported by two other
objects, known as posts.

Of course, the objects and relations involved in semantic nets need
not be so concrete. The representation used in the farmer illustration
is a semantic net because particular arrangements of the farmer and his
possessions can be viewed as abstract objects, thereby meriting node status,
and allowed river crossings can be viewed as abstract relations, thereby
meriting link status.

22 Chapter 2 Semantic Nets and Description Matching

Figure 2.3 An ordinary

net (left) and a semantic net
(right). Natural-language
labels associate intuitive

gOOC:/

meanings with .nodes ?nd links, 90075 is-supported-by is-supported-by

thereby producing an informal

semantics. :

R — G088 G0083 Right
post post

Ultimately, both equivalence semantics and procedural semantics lead
back to descriptive semantics. In the case of equivalence semantics, descrip-
tions have meaning because they are equivalent to something that means
something to you. In the case of procedural semantics, descriptions have
meaning because they cause a program to exhibit a behavior that means
something to you. Thus, the alternatives all seem rooted in perceptions to
which you ascribe meaning intuitively.

Theoretical Equivalence Is Different from
Practical Equivalence

In some uninteresting theoretical sense, any computer-based representation
can do anything that any other can do, because computer-based represen-
tations are based, ultimately, on arrangements of bits in memory. Conse-
quently, any representation that can be used to represent arrangements of
bits can be used as a substratum for the construction of any other repre-
sentation.

In a practical sense, however, some representations help you to focus
on the objects and relations you need to solve a class of problems. One
representation, therefore, is more powerful than another because it offers
you more convenience even though, theoretically, both can do the same
work. Conwvenience, however, is perhaps too weak a word. In general, the
good qualities of powerful representations make practicable what would be
impracticable with weak representations.

THE DESCRIBE-AND-MATCH METHOD

In this section, you learn about the describe-and-match method; by way of
illustration, you learn how the describe-and-match method can be used to
identify two-dimensional objects.

As illustrated in figure 2.4 the basic idea behind the describe-and-
match method is that you can identify an object by first describing it
and then searching for a matching description in a description library. The
objects involved may be simple physical entities such as the blocks with

The Describe-and-Match Method 23

Figure 2.4 The describe-and-
match paradigm. To identify

an object, you describe it, and
then you look for a matching
description in a description

library.
I

Object Description Library B
ﬁ SN /O\@ VAN H
S I

Y p\ A Rejects

which children play, or complicated abstractions, such as those that emerge
in the forthcoming examples.

As you move through this book, you will see many methods, such as

the describe-and-match method, reduced to a specification cast in a form
that is more precise than ordinary English, yet more transparent than
a programming language—particularly a programming language that you
do not happen to know. In this book, this informal, half-English, half-
program form is called procedural English. Here is the describe-and-
match method expressed in procedural English:

To identify an object using describe and match,
> Describe the object using a suitable representation.

> Match the object description against library descriptions
until there is a satisfactory match or there are no more
library descriptions.

> If you find a satisfactory match, announce it; otherwise,
announce failure.

In general, procedural English allows all these programming constructs:

m Steps and substeps, denoted by indentation, much after the fashion of
an outline

® Iterations, denoted by words such as until and for each

m Conditional actions, denoted by words such as if and otherwise

B Various sorts of tests, denoted variously

24 Chapter 2 Semantic Nets and Description Matching

Figure 2.5 A feature space.
An unknown object is identified
according to the distances 4
between its feature point

and those of various models.
Evidently the unknown is most

likely to be a single-hole switch 8
plate. Number
of holes
2

<~ Unknown

8 16

Area

Many good programmers use a notation much like procedural English at
the design stage, when they are deciding what a procedure will do. Much of
the procedural English then survives in the form of illuminating comments.

Feature-Based Object identification lllustrates
Describe and Match

Feature-based object identification is one of the simplest applications
of the describe-and-match method. Feature-based object identifiers consist
of a feature extractor and a feature evaluator. The feature extractor
measures simple characteristics such as an object’s area. Values obtained
by the feature extractor become the coordinates of a feature point in
feature space, a multidimensional space in which there is one dimension
for each feature measured. To identify an unknown object, you compare
the distances between its feature point and the feature points of various
idealized objects. The most likely identity of the unknown object is deter-
mined by the smallest distance. Figure 2.5 shows the points corresponding
to an unknown object and a family of idealized electrical-box covers in a
box-cover feature space.

Generally, speed and discrimination considerations determine which
features are used in particular situations. Candidate features for objects

Geometric Analogy Rules Describe Object Relations and Object Transformations 25

Figure 2.6 An easy problem

for the ANALOGY program.

@Eﬁ@DD\

such as electrical-box covers include total object area, hole area, hole count,
perimeter length, minimum distance from center of area to edge, maximum
distance from center of area to edge, average distance from center of area
to edge, length of major axis of ellipse of equal inertia moment, length of
minor axis of ellipse of equal inertia moment, total area minus hole area,
ratio of hole area to total area, and ratio of perimeter squared to area.

THE DESCRIBE-AND-MATCH METHOD
AND ANALOGY PROBLEMS

In this section, you learn that the describe-and-match method, working
in harness with a semantic-net representation, produces impressive perfor-
mance on geometric analogy problems in which the problem, as shown in
figure 2.6, is to select an answer figure, X, such that A is to B as Cis to X
gives the best fit.

One way to start is to describe rules that explain how A becomes B and
how C becomes each of the answer figures. Then, you can match the rule
that explains how A becomes B to each rule that explains how C becomes
an answer. The best match between rules identifies the best answer. Thus,
the describe-and-match paradigm can be used to solve analogy problems.

The key to solving such problems lies in good rule descriptions. The
ANALOGY program, described in this section, does its job by matching rule
descriptions together and measuring description similarity.

Geometric Analogy Rules Describe Object
Relations and Object Transformations

ANALOGY uses two-part rules. One rule part describes how the objects are
arranged in the source and destination figures. One object may be above,
to the left of, or inside of another. The other rule part describes how the
objects in the source figure are transformed into objects in the destination
figure. An object may be scaled, rotated, or reflected, or may be subject

26 Chapter 2 Semantic Nets and Description Matching

Figure 2.7 A rule described
as a geometric analogy net,
which is a kind of semantic | @
net. Rule descriptions consist f

of object-relation descriptions
and object-transformation
descriptions. Links shown n m
solid describe relations among |
source objects and among :
destination objects. Links
shown dotted describe how
objects are transformed
between the source and the

destination.
|

left-of

to some combination of these operations. Also, an object may be added or
deleted.

A typical rule can be described using a semantic-net representation, as
illustrated in figure 2.7. This representation is not just any semantic net,
of course—it is one that is specialized to describe rules:

A geometric analogy net is a representation

That is a semantic net

In which

> The nodes denote dots, circles, triangles, squares, rectan-
gles, and other geometric objects.

> Some links denote relations among figures objects, specif-
ically inside, above, and to the left of.

> Other links describe how figure objects are transformed.
The possibilities are addition, deletion, expansion, con-
traction, rotation, and reflection, and combinations of
these operations.

Geometric Analogy Rules Describe Object Relations and Object Transformations 27

Figure 2.8 Two circles, one
of which is inside a polygon.
One object is inside another if
a line drawn to infinity crosses |
the boundary of the potentially '
surrounding object an odd
number of times. Thus, one

circle is inside; the other is not.
]

You could write this specification for geometric analogy nets, of course,
without any reference to semantic nets, by importing all the descriptive
elements from the semantic-net specification. The alternative shown is bet-
ter, not only because it saves space, but also because it focuses on exactly
what you need to add to transform the general concept into a representa-
tion tailored to a particular circumstance. As you can see, transforming
the semantic-net concept into a geometric analogy net requires only the
application-specific recitation of which link labels are allowed and what
the nodes and links denote.

ANALOGY uses a simple idea, illustrated in figure 2.8, to decide whether
Inside, rather than either Left-of or Above, is the appropriate relation
between objects. First, ANALOGY makes sure that the objects do not
touch. Then, ANALOGY constructs a line from any point on one figure to
infinity, as shown in figure 2.8. If the line crosses the second figure an odd
number of times, then the second figure surrounds the first. Happily, this
method involves only simple line-crossing tests, and it works even if the
figures are extremely convoluted.

As shown in figure 2.9, ANALOGY uses another simple procedure to
compute the spatial relationship between two objects. ANALOGY computes
the center of area of each of the two objects, constructs diagonal lines
through the center of area of one of them, and notes which region contains
the center of area of the other object. Because the relations used are
symmetric, it is not necessary to note both left and right relations.

Finally, ANALOGY uses a matching procedure to decide if an object
in one figure can be transformed into an object in another figure by a
combination of scaling, rotation, and reflection operations. The dotted
links in figure 2.7 mark objects that pass this transformation test.

Now that you have seen how rules are constructed, you can see that
the example in figure 2.10 is contrived so as to depend on only relations

28 Chapter

2 Semantic Nets and Description Matching

Figure 2.9 A square to the
left of a rectangle. Relations
between objects are determined

by comparing centers of area.
S ———— x above y

x left-of y

or

y left-of x

y above x

between objects. No object transformations can influence the solution,
because no objects are transformed in the move from the source figure to
the destination figure.

It is clear that the C-to-3 rule best matches the A-to-B rule because,
with [associated with z and m associated with y, the two rules match
exactly.

Note, however, that there is no a priori reason to associate [with z
rather than with y. In going from the source figure to the destination
figure, you want to be sure that squares go to squares, circles to circles,
triangles to triangles, and so on. But this need to match one object to a
geometrically similar object does not hold in comparing two rules. In the
example, answer 3 is to be selected even though the objects in A and B
are a triangle and a square, whereas in C and in all the answer figures, the
objects are a circle and a dot. In general, ANALOGY must try all possible
ways of associating the nodes when matching rules.

This one-for-one association of variables implies that the number of
objects that move from the source figure to the destination figure must be
the same in both of the two rules. The number of additions and deletions
must be the same as well. Any attempt to match two rules for which the
numbers are different fails immediately.

If n objects move from the source figure to the destination figure in
each of two rules being compared, there will be n! ways of associating the
variables in searching for the best way to match the rules. More generally,

Geometric Analogy Rules Describe Object Relations and Object Transformations 29

unchanged _unchanged
above left-of above above
unchanged _~~ N unchanged

unchanged ___unchanged
above left-of above left-of
unchanged _~—~ N unchanged

Figure 2.10 A
problem whose
solution is determined
by relations only.
Comparison of the rule
descriptions verifies
that the C-to-3 rule

matches best.
|

if n; objects move, n, are added, and n3 deleted, in going to the destination
figure, then ny! ny! ng! is the number of possible associations. All must be
tried.

In the example, there are two possible ways to associate the objects,
because n; = 2, ny, = 0, and ng = 0. Specifically, ANALOGY can associate
I with z and m with y, or ANALOGY can associate | with y and m with z.

The previous example involves only relations between objects, because
no objects are transformed. Symmetrically, for the problem in figure 2.11,
there is only one object in each figure, so there are no relations between

30 Chapter 2 Semantic Nets and Description Matching

rotate by 45 ©

shrink by 2

unchanged

Figure 2.11 A
problem whose
solution is determined
by transformations
only. Because each
figure has only one
object, relations
between objects

are not relevant.
Comparison of the rule
descriptions verifies
that the C-to-1 rule
provides is the best

match.
|

objects, and only object transformations can matter. ANALOGY concludes
that the C-to-1 rule best matches the A-to-B rule, because only answer 1
corresponds to a simple 45° rotation with no reflection or scale change.

Scoring Mechanisms Rank Answers

How should ANALOGY measure the similarity of two rules? So far, the
examples have been so simple that the best answer rule matches the A-to-
B rule exactly. But if an exact match cannot be found, then ANALOGY
must rank the inexact matches. One way to do this ranking is to count the
number of matching elements in the two rules involved in each match, as
shown in figure 2.12.

To tune the counting a bit, you can weight relations describing ob-
ject transformations less heavily than you weight relations describing re-
lations among objects. Assuming that relations among objects each add
one point to the total score, then less than one point should be added for
each object-transformation relation. Experimentally, the numbers shown
in figure 2.13 work well. A radically different set of numbers would reflect

Scoring Mechanisms Rank Answers

Figure 2.12 Rule similarity,
measured by degree of overlap.
You determine the answers by
finding the C-to-X rule with the
maximum number of elements

in common with the A-to-B rule.
.|

Maximize

AtoB /

CtoX

a different judgment about how the various possibilities should be ordered.
The given set is biased toward rotations and against reflections. A different
set might indicate the opposite preference. The corresponding variations on
ANALOGY would occasionally disagree with one another about the answers.
Of course, it is possible to elaborate the measure of similarity in other
directions. Suppose, for example, that Spp is the set of elements in the
A-to-B rule, and that Scx is the set of elements in the C-to-X rule. Then,
SaB N Scx is the set of elements that appear in both rules, Sqag — Scx
is the set of elements appearing in the A-to-B rule but not in the C-to-X
rule, and Scx — Sap is the set of elements appearing in only the C-to-X
rule. With these sets in hand, you can use the following formula to measure
similarity:
Similarity =a x Size(Sag N Scx)
— B x Size(SaB — Scx)
— 7 % Size(Scx — SaB)
where «, 3, and v are weights, and Size is the function that computes the
number of elements in a set. If 3 =0, ¥ = 0, and « = 1, the formula
reduces to counting the common elements. If 3 and v are not the same,
the formula gives asymmetric similarity judgments, allowing, for example,

32 Chapter

2 Semantic Nets and Description Matching

Figure 2.13 Weights
determine transformation-
description contributions to
similarity scores.

05 —T <—— Unchanged
04 —1— <«<—— Scaled
<—— Rotated
0.3 —1— <—— Scaled and rotated
02 —
01 —— «<—— Reflected
<—— Scaled and reflected
<—— Rotated and reflected
0 e <—— Scaled, rotated, and reflected

the A-to-B rule to be more similar to the C-to-X rule than the C-to-X rule
is to the A-to-B rule.

Be skeptical about such formulas, however. Viewed as a representation
for importance, a set of weights is not explicit and exposes little constraint.

Ambiguity Complicates Matching

So far, all the objects in the source and destination figures have distinct
shapes. Consequently, it is easy to decide how to form the rule describing
the transformation. In situations such as the one shown in figure 2.14,
however, there is ambiguity because there is no way to know which of the
two triangles has disappeared. Perhaps the larger one is gone; alternatively
the smaller one may have been deleted and the larger one may have shrunk.
In fact, you cannot judge either explanation to be superior without con-
sidering the other figures given in the problem. Consequently, ANALOGY
must construct two rules, one corresponding to each way the triangles in
the source figure can be identified with triangles in the destination. In
general, for each source and destination pair, many rules are possible; and,
for each rule, there may be many ways to match it against another rule.

Good Representation Supports Good Performance

Examine figure 2.15. It shows three examples, drawn from intelligence
tests, that are well within the grasp of the ANALOGY procedure. In the
first example, the most reasonable theory about the rule for going from A
to B is that the inside object is deleted. The C-to-3 rule is the same, and

Story Plots Can Be Viewed as Combinations of Mental States and Events 33

Figure 2.14 An ambiguous
change. The large triangle may
have been deleted; alternatively,
the small one may have been
deleted and the large one

shrunk.
|

answer 3 is the best answer, with answer 4 a close second. Answer 4 would
be the clear winner if answer 3 were not present.

In the second example, answer 3 is the correct answer. Actually, an-
swer 3 is the only answer figure that ANALOGY considers seriously, because
among the answer figures, only answer 3 has the same number of objects
as B has. Remember that requiring the same number of objects is an in-
direct consequence of permitting a match only between rules for which the
numbers of movements, additions, and deletions are the same.

In the third example, the A-to-B rule could be described as either a
rotation or a reflection, with answer 2 being the best answer if the pro-
cess prefers rotations, and with answer 1 being the best answer if it likes
reflections better. ANALOGY prefers rotations, and judges answer 2 to be
best.

THE DESCRIBE-AND-MATCH METHOD
AND RECOGNITION OF ABSTRACTIONS

In this section, you learn that the describe-and-match method, again work-
ing in harness with a semantic-net representation, can be used to recognize
abstractions in story plots. In combination with what you have already
learned about the describe-and-match method and semantic nets, you see
that both have a broad reach.

Story Plots Can Be Viewed as Combinations of
Mental States and Events

To describe plots using a semantic net, you need a vocabulary of node
types and link labels. Happily, you soon see that you can do a lot with
a vocabulary of just three node types and three link labels. The three
node types are mental states, denoted by MS in diagrams; positive events,
denoted by +; and negative events, denoted by —. The link labels are 1,
an acronym for initiates, meaning that the mental state or event at the
tail of an 4 link leads to the one at the head of the link; ¢, for terminates,

34 Chapter 2 Semantic Nets and Description Matching

Figure 2.15 Three problems
solved successfully by

ANALOGY.
|

AlIA
olE

meaning that the mental state or event at the tail turns off the one at the
head; and c, for corefers, meaning that the mental state or event at the
tail refers to the same mental state or event as the one at the head. Links
labeled with ¢ have two heads: double-headed links are a notational
shorthand for pairs of identically labeled single-headed links pointing in
opposite directions.

With three node types and three link labels, there could be as many
as 3 x 3 x 3 = 27 node-link-node combinations. Of these 27 possibilities,
15 have a natural, easily stated interpretation, and each of these is called
a base unit. In figure 2.16, for example, four base units are exhibited,

Story Plots Can Be Viewed as Combinations of Mental States and Events 35

Figure 2.16 Combinations

in which mental states and Success Failure Enablement Motivation
events initiate one another.

Mental states may initiate
positive events or negative MS + —
events and vice versa. The four

possible combinations constitute
instances of success, failure,
enablement, and motivation, all i i i i

of which are base units.

each of which involves a mental state that initiates an event, or vice versa.
As shown, if a mental state initiates an event, you have what is casually
called a success or a failure, depending on the sign of the event. If an
event initiates a mental state, we witness enablement or motivation, again
depending on the sign.

Another group of base units is shown in figure 2.17. This time, each of
the base units involves two mental states. When one mental state initiates
another, we say that recursion has occurred. When one terminates another,
we have a change of mind. If a mental state persists over a period of time,
the individual involved is exhibiting perseverance.

The final group of base units is shown in figure 2.18. Now there are no
mental states at all; there are only events joined by termination or coref-
erence. The eight combinations are positive tradeoff and negative tradeoff,
positive coreference and negative coreference, loss and resolution, and mized
blessing and hidden blessing.

In descriptions, base units often overlap, producing recognizable aggre-
gates. Let us call these aggregates composite units. Together, base units
and composite units constitute abstraction units. Figure 2.19 shows a
composite unit consisting of a success base unit joined, by its positive event,
to a loss base unit. When a success is followed by a loss, in normal language
we often say that “the success was fleeting,” or use words to that effect.
Hence, this composite unit is called fleeting success.

Other examples of composite units are shown in figure 2.20. Each com-
posite unit in the figure consists of a negative event, followed by a mental
state, followed by a positive event. The composite units differ because
they involve different links, and, hence, different base units. Motivation
followed by success yields success born of adversity; motivation followed by

36 Chapter

2 Semantic Nets and Description Matching

Figure 2.17 Mental states
joined by initiate, terminate,

or corefer links. The three
possible combinations constitute
instances of recursion, change MS MS MS
of mind, and perseverance base

units.

Recursion Change of mind Perseverence

MS MS MS

a positive event that terminates the motivation-producing negative event
is a matter of fortuitous success; and finally, motivation followed by a suc-
cess involving a positive event that terminates the motivation-producing
negative event is intentional problem resolution.

When more than one person is involved, more elaborate arrangements
are possible. In figure 2.21, for example, the situation from one person’s
perspective is a success born of adversity. In addition, however, the nega-
tive event from that person’s perspective corefers to a positive event from
the other person’s perspective. Similarly, the positive event corefers to a
negative event. These additions, together with the success born of adver-
sity, constitute retaliation.

Abstraction-Unit Nets Enable Summary

To recognize abstractions in a story plot, you first describe the story plots
in terms of nodes, representing mental states and events, and links, repre-
senting relations among those mental states and events. Then you match
the nodes and links with items in a catalog of named abstraction units.
Consider, for example, the following story about Thomas and Albert:

Thomas and Albert
Thomas and Albert respected each other’s technical judgment and
decided to form a company together. Thomas learned that Albert
was notoriously absentminded, whereupon he insisted that Albert
have nothing to do with the proposed company’s finances. This
angered Albert so much that he backed out of their agreement,
hoping that Thomas would be disappointed.

Abstraction-Unit Nets Enable Summary

37

Figure 2.18 Positive events
and negative events joined by

terminate or coreference links.

The possible combinations
constitute instances of

eight base units: positive
tradeoff, loss, resolution,
negative tradeoff, positive
coreference, mixed blessing,
hidden blessing, and negative
coreference.

Positive

tradeoff Loss Resolution
t t t

Positive

coreference Mixed blessing Hidden blessing

C C C

Negative
tradeoff

Negative
coreference

C

Figure 2.22 shows what “Thomas and Albert” looks like in semantic-net
terms. The respect abstraction is captured by the two mental states at
the top. Those mental states initiate the decision to form a company, a
positive event from both Thomas’s and Albert’s points of view. Thomas’s
discovery about Albert is a negative event, which leads to a mental state
in which Thomas thinks about the company’s finances, which leads to his
insistence that Albert keep out of them, a positive event as far as Thomas
is concerned. The insistence is a negative event from Albert’s perspective,
however. For Albert, the insistence leads to a mental state that leads to
backing out of the agreement, which Albert views now as a positive event
and Thomas views as a negative one.

38 Chapter 2 Semantic Nets and Description Matching

Figure 2.19 Base units joined
to produce larger, composite
units. In this illustration, a Fleeting success
success unit and a loss unit,
both basic, join to produce a
fleeting success composite unit.
|

Success

Now think of the diagram as a mine for abstraction units. Digging a
little reveals that there are six abstraction units that are not wholly con-
tained in some higher-level abstraction unit. These are called top-level
units. In this particular example, the top-level units are connected to each
other by exactly one shared mental state or one shared event.

Figure 2.23 shows the resulting arrangement of top-level units, in the
form of a top-level abstraction net, with the top-level units shown in the
same relative positions that their pieces occupied in figure 2.22.

To summarize a plot using a top-level abstraction net, you describe
the central top-level unit first. Then, you describe the surrounding top-
level units and explain how those top-level units are related to the central
top-level unit. For the “Thomas and Albert” story, you would produce the
following result:

Abstraction-Unit Nets Enable Summary 39

Figure 2.20 Three different
composite units. In this
illustration, a negative event
always is followed by a mental
state that is followed by a
positive event. In the first
case, a motivation base unit

is followed by a success base
unit producing an instance of
success born of adversity. In
the second, the success unit
disappears and a resolution unit
appears, producing a fortuitous
success. In the third, success
reappears, joining the other
two, producing an intentional

problem resolution.
L]

Success born Fortuitous Intentional
of adversity success problem resolution

+

)

A Summary of Thomas and Albert
Albert retaliated against Thomas because Thomas went through
an intentional problem resolution that was bad for Albert. The
retaliation caused a loss for Thomas and a positive tradeoff for Al-
bert. The loss reversed Thomas’s previous success, and the positive
tradeoff reversed Albert’s previous success.

In addition to enabling summary, top-level abstraction nets allow you to
compare and contrast two situations, even when those two situations are
superficially quite different. Consider the following story about John and
Mary, for example:

John and Mary
John and Mary loved each other and decided to be married. Just
before the wedding, John discovered that Mary’s father was se-
cretly smuggling stolen art through Venice. After struggling with
his conscience for days, John reported Mary’s father to the police.
Mary understood John’s decision, but she despised him for it nev-
ertheless; she broke their engagement knowing that he would suffer.

40 Chapter 2 Semantic Nets and Description Matching

Figure 2.21 Mental states,
positive events, and negative
events linked across perspec-
tives. In this illustration, there ‘ ‘ :
are two perspectives. Each | Perspective 1 : . Perspective 2
perspective involves a positive : ' :

event that is seen as a negative c
event in the other. This particu- § + ;'

Retaliation

lar combination of perspectives,
events, and a mental state is
called a retaliation.
]

On the surface, “John and Mary” seems to have little resemblance to
“Thomas and Albert.” More abstractly, however, both involve a central
retaliation brought on by an intentional problem resolution leading even-
tually to a loss and a positive tradeoff, both of which finish off a previous
success. Such similarities are easy to see, once top-level abstraction nets
are constructed: the stories’ diagrams are exactly the same.

Of course, more complicated stories will have more complicated top-
level abstraction nets. Consider, for example, “The Gift of the Magi,” a
story by O. Henry, with the following plot:

The Gift of the Magi
Della and her husband, Jim, were very poor. Nevertheless, because
Christmas was approaching, each wanted to give something special
to the other. Della cut off and sold her beautiful hair to buy an
expensive watch fob for Jim’s heirloom gold watch. Meanwhile,
Jim sold his watch to buy some wonderful combs for Della’s hair.
When they found out what they had done, they were sad for a
moment, but soon realized that they loved each other so much,

nothing else mattered.

Abstraction Units Enable Question Answering 41

Figure 2.22 Two stories
viewed as aggregates of
abstraction units, both base and
composite. In this illustration,
there are two perspectives,
Thomas’s and Albert’s, and six

top-level abstraction units.
.|

Thomas's Albert's
perspective perspective
c
Respect MS MS Respect
t i
Form c Form
company + + company

Discove

Thought

Ban

Anger

Thought

Withdrawal

Disappointment ®< >

Figure 2.24 shows one plausible set of nodes and links for the story; those
nodes and links lead to the top-level abstraction net shown in figure 2.25.

Abstraction Units Enable Question Answering

Abstraction units allow you to answer certain questions by matching. Here
are examples:

What is the story about? Answer by naming the central abstraction
unit in the top-level abstraction net. For example, “Thomas and Al-
bert” is about retaliation.

What is the result? Answer by naming the abstraction units that are
joined to earlier abstraction units in the top-level abstraction net, but

42 Chapter

2 Semantic Nets and Description Matching

Figure 2.23 A top-level
abstraction net formed from the
top-level units of figure 2.22.
This top-level abstraction net
enables you to build a summary
description around the most
highly linked top-level unit, the

retaliation.
|

Success
A
Intentional
problem
resolution
overlaps
overlaps

overlaps

Retaliation

overlaps

overlaps

Positive
tradeoff

not to later abstraction units. For example, the result in “Thomas and
Albert” is a loss and a positive tradeoff.

Does the story involve a certain abstraction? Answer by checking for
the appropriate abstraction unit. For example, “Thomas and Albert”
does contain an instance of intentional problem resolution.

In what way is one story like another? Answer by naming the most
highly connected abstraction unit that appears in both top-level ab-
straction nets. If hard pressed, enumerate the other abstraction units
that appear in both. For example, “Thomas and Albert” is like “John
and Mary” in that both involve retaliation. Moreover, both involve
success, intentional problem resolution, loss, and positive tradeoff.

In all these examples, you could give more detailed answers by naming the
people and the events involved in the abstraction units mentioned.

Abstraction Units Make Patterns Explicit

In this section, you have seen how a base-unit semantic net facilitates sim-
ilarity analysis and summary by making mental states, events, and links
between them explicit. Thus, the first criterion of good representation—
that something important is made usefully explicit—is satisfied. Some
people argue, however, that a base-unit semantic net does not yet pass the
computability criterion for good representation because there is no fully
specified way to translate text into abstraction-unit patterns.

Problem Solving and Understanding Knowledge

43

Figure 2.24 The mental
states, positive events, and
negative events of “The Gift

of the Magi.”
L]

Jim's
perspective

Della's
perspective

Wants to give gift

Wants gift (combs, fob)

Wants money

Wants to sell (watch, hair)

Sells (watch, hair)

Gets money

Gives gift
\
Receives gift @
t
Regrets
c c
Appreciates

PROBLEM SOLVING AND
UNDERSTANDING KNOWLEDGE

When approaching a new class of problems, to be solved either by you or by
a computer, you always should start by asking yourself certain questions
about knowledge. This section discusses a few questions about knowl-
edge that are particularly important.

44 Chapter 2 Semantic Nets and Description Matching

Figure 2.25 The top-level

abstraction unit net for “The
Gift of the Magi.” Al links are @‘;;‘:5‘9

overlaps links.
L]

Recursmn Hudden
blessmg

Regrettable
mistake

Hidden Recursion
blessing

m What kind of knowledge is involved?

Perhaps the important knowledge concerns the description of concrete or
abstract objects. Alternatively, perhaps the important knowledge is about
a problem-solving method.

m How should the knowledge be represented?

Some knowledge may, for example, fit nicely within the semantic-net frame-
work. Other knowledge is best embedded in a collection of procedures.
There are many possibilities.

® How much knowledge is required?

After learning what kind of knowledge is involved in a task, this question
should be the one you ask. Are there 40 things to know, or 400, or 4,0007

One reason to ask about quantity is that you must consider the de-
mand for sensible resource allocation among the various chores required.
Another is that knowing the size of a problem builds courage; even if the
size is large, digesting bad news is better than anticipating even worse news
unnecessarily.

In any event, the tendency is to overestimate grossly; after seeing that
a task is reasonably complicated, it is easy to suppose that it is unimag-
inably complicated. But many tasks can be performed with human-level
competence using only a little knowledge.

m What exactly is the knowledge needed?

Ultimately, of course, you need the knowledge. To do geometric analogy
problems, you need to know what relations are possible between figure
parts, and you need to know how parts can change. To recognize abstrac-
tions, you need a library of base and composite abstraction units. Much of
learning any subject, from electromagnetic theory to genetics, is a matter
of collecting such knowledge.

Background 45

SUMMARY

Once a problem has been described using an appropriate representa-
tion, the problem is almost solved.

® A representation consists of a lexical part, a structural part, a proce-
dural part, and a semantic part.

® There are many schools of thought about the meaning of semantics.
Ultimately, meaning always seems to be rooted in human perception
and human intuition.

m Feature-based object identification illustrates the describe-and-match
method. An unknown object is identified with an idealized object if
their feature points are nearest neighbors in feature space.

B Geometric analogy rules describe object relations and object transfor-
mations. You solve geometric analogy problems by determining which
rules are most similar.

@ Story plots can be viewed as combinations of mental states and events.

® Abstraction-unit nets enable certain kinds of summary and question
answering.

® Good representations make important objects and relations explicit,
expose natural constraints, and bring objects and relations together.

BACKGROUND

The discussion of geometric analogy problems is based on work by Thomas
Evans [1963]. The discussion of plot units is based on the work of Wendy
Lehnert; the “John and Mary” story and the analysis of “The Gift of the
Magi,” in particular, are adapted from one of her highly influential papers
[1981].

Feature vectors, and object identification using feature vectors, are

described in more detail in Robot Vision, by Berthold K. P. Horn [1984].

