Learning by
Recording
Cases

In this chapter, you learn how it is possible to deal with problem do-
mains in which good models are impossible to build.

In particular, you see how to learn by recording cases as is, doing
nothing to the information in those cases until that information is used.
First, you learn that you are using the consistency heuristic whenever you
attribute a feature of a previously observed thing to a new, never-before-
seen thing. Next, you learn how it is possible to find nearest neighbors in
a feature space quickly using k-d trees.

By way of illustration, you see how to find the nearest neighbors of a
wooden block, measured by width and height, in time proportional to the
logarithm of the number of blocks. You also see how the same ideas make
it possible to move a robot’s arm without developing complicated motion
equations and without obtaining difficult-to-measure arm parameters.

Once you have finished this chapter, you will know how to do nearest-
neighbor calculations, and you will understand some of the conditions under
which nearest-neighbor calculations work well.

RECORDING AND RETRIEVING RAW EXPERIENCE

In this section, you learn about the consistency heuristic, and you learn to
identify the kinds of problems you can solve by recording cases for later
use.

397

398

Chapter

19 Learning by Recording Cases

The Consistency Heuristic Enables
Remembered Cases to Supply Properties

Consider the eight blocks in figure 19.1. Each has a known color, width, and
height. Next, suppose you are confronted with a new block of size 1 by 4
centimeters and of unknown color. If you had to guess its color, given
nothing else to go on, you would have to guess -hat the color is the same as
that of the block that is most similar in other respects—namely in width
and height. In so guessing, you would use the consistency heuristic:

The consistency heuristic:

> Whenever you want to guess a property cf something,
given nothing else to go on but a set of reference cases, find
the most similar case, as measured by known properties,
for which the property is known. Guess that the unknown
property is the same as that known propert;:.

Plotting the widths and heights of the cases yields the feature space shown
in figure 19.2 and makes it easy to apply the consistency heuristic in the
color-guessing situation. No fancy reasoning is needed. Because the width
and height of the unknown, labeled U, are closest to the width and height
of the orange block, you have to assume that the orange block is the right
case, and to guess that block U is orange.

The Consistency Heuristic Solves a Difficult
Dynamics Problem

Consider the problem of moving a robot hanc. along a prescribed path in
space at a prescribed speed, as in figure 19.3. To succeed, you clearly need
to know how the joint angles should change with time, and what joint
torques will produce those joint-angle changes.

Relating the joint angles to manipulator position is a kinematics prob-
lem. It is relatively easy to derive formulas thal relate manipulator position
to joint angles. For the joint angles, 6, and 6, and segment lengths, /; and
Iy, of the two-dimensional manipulator shown in figure 19.3, the equations
are as follows:

z =l cos by + lp cos(6y -+ 62),

y= Lisinf, + sin(91 -= 02)

For the two-joint, two-dimensional manipulator shown in figure 19.3, it is
also straightforward, albeit tedious, to derive the inverse formulas relating
joint angles to manipulator position:

lasind
_ -1 E _ -1 _,2 s Uy
6, = tan (z) tan (ll Thoosts 02>

2 2 2 2
_ 1 [Z +y° - ll — l2
62 = cos <——__2lll‘2)

The Consistency Heuristic Solves a Difficult Dynamics Problem 399

Figure 19.1 Eight blocks of
known color, width, and height.
These eight form a set of cases
by which color can be guessed
for other blocks of known width

and height. Yellow
I

Purple Red

Orange

Blue

Green

Violet

Given formulas for joint angles, you might think it would be easy to
move a manipulator: Just chop up the desired trajectory into pieces, de-
termine the necessary joint motions during each piece, and tell the motors
about the results. Unfortunately, the only message that motors understand
is one that tells them the torque you want them to supply.

Relating joint motions to required motor torques is a dynamics prob-
lem, which can be unbearably intricate mathematically, even though every-
thing ultimately is just a matter of Newton’s second law relating force to

400 Chapter 19 Learning by Recording Cases

Figure 19.2 A feature

space relating the block of
unknown color to eight blocks
of known color. The color of the
unknown, block U, is judged to
be the same as the color of the
orange biock, the one that is

closest in width and height.
L]

the product of mass and acceleration. The following complicated-looking
equations emerge, ignoring gravity, assuming cylindrical links, for the sim-

Height

Red Yellow
[] []
Orange Purple
.)
u
.
Red Blue

[] ®
Violet Green
L] L J
2 4 6

Width

ple two-joint, two-dimensional manipulator shown in figure 19.3:

7 =61 (+ L + myly by cos 0, + M + mpl?)
+ 92(12 + —— 4 m22llh 0s ;)
—0’3"”2“2 sin 6,
— 6:183ma bl sin B,
5 =6, (L + mahlz cos By + m_zlz)
+62(I + m2L22)
_+_0-%mql162 sin 6.

where each 7; is a torque, each #; is an angular velocity, each #; is an
angular acceleration, each m; is a mass, each [; is a length, and each I; is

a moment of inertia about a center of mass.

The Consistency Heuristic Solves a Difficult Dynamics Problem

401

Figure 19.3 A robot arm
throwing a ball. To arrange
the throw, you must know the
joint angles that produce the
straight-line motion shown,
and you must know how to
apply torques that produce the

desired joint angles.
L |

\ 4

The torque equations for three-dimensional manipulators are much
bulkier because six joints are required to place a manipulator at a given
position in space with a given orientation. Like the solution for two joints,
the real-world solutions demonstrate that the required torques depend, in
general, on accelerations, on velocities squared, on velocity products, and
on multipliers that depend on joint position:

B Because there are velocities squared, the torques necessarily involve
centripetal forces.

B Because there are products of different velocities, the torques involve
Coriolis forces.

B Because there are multipliers that are functions of several angles, the
torques involve variable, cross-coupled moments of effective inertia.

Even with all this mathematical sophistication, it remains difficult to get
satisfactory results with real-world robot arms, and to explain how we can
manage to move our biological arms. There are just too many factors to
consider and too many measurements to be made with too much precision.

Fortunately, nearest-neighbor calculations in a feature space, together
with the notion of practice, provide an alternate approach to robot-arm
control. Imagine a giant table with columns for torques, positions, veloci-
ties, squared velocities, velocity products, and accelerations:

402 Chapter 19 Learning by Recording Cases

Figure 19.4 The robot arm
shown in figure 19.3 tries to
follow a straight line. In the
first instance the robot arm
does poorly because its table
is sparse. In the second and
third instances, a table that
relates torques to desired path
parameters is used, and the
robot arm does much better.

No practice

One practice trajectory e

T T2 01 02 él 92 0% 0% éléz 0% 93

Next, suppose you issue a command that causes the robot arm to be waved
about more or less randomly. Every so often, you measure the torques,
positions, and other indicated parameters, and you record the results in
the giant table.

Then, when you want to move the robot arm along a prescribed trajec-
tory, you break up that trajectory into little pieces; treat the giant table as a
feature space; look for entries with nearby positions, velocities, squared ve-
locities, velocity products, and accelerations; and interpolate among them
to find appropriate torques for the corresponding little piece of trajectory.

You might worry, legitimately, that no table could hold enough entries
to fill the feature space densely enough to do a good job, even with an
elaborate interpolation method. To combat this density problem, you ar-
range for practice. The first time that you have the robot try a particular
reach or throw motion, it does miserably, because the table relating torques
to positions, velocities, and accelerations is sparse. But even though the
robot does miserably, it is still writing new entries into its table, and these

A Fast Serial Procedure Finds the Nearest Neighbor in Logarithmic Time 403

new entries are closer than old entries to the desired trajectory’s positions,
velocities, and accelerations. After a few tries, motion becomes smooth
and accurate, as shown in figure 19.4, because you are interpolating among
the new table entries, and they are much closer to what you want.

FINDING NEAREST NEIGHBORS

In this section, you learn about two relatively fast ways to find nearest
neighbors; one is serial, and one is parallel.

A Fast Serial Procedure Finds the Nearest
Neighbor in Logarithmic Time

The straightforward way to determine a block’s nearest neighbor is to calcu-
late the distance to each other block, and then to find the minimum among
those distances. For n other blocks, there are n distances to compute and
n — 1 distance comparisons to do. Thus, the straightforward approach is
fine if n is 10, but it is not so fine if n is 1 million or 1 billion.

Fortunately, there is a better way, one for which the average number
of calculations is proportional to log, n, rather than to n. This better way
involves the use of a special kind of decision tree. In general, a decision
tree is an arrangement of tests that prescribes the most appropriate test at
every step in an analysis:

A decision tree is a representation

That is a semantic tree

In which

> Each node is connected to a set of possible answers.

> Each nonleaf node is connected to a test that splits its set
of possible answers into subsets corresponding to different
test results.

> Each branch carries a particular test result’s subset to
another node.

To exploit the decision-tree idea so as to deal with the block-identification
example, you divide up the cases in advance of nearest-neighbor calculation.
As illustrated in figure 19.5, all cases are divided first by height alone into
two sets, each with an equal number of blocks. In one set, all heights are
equal to or greater than 5 centimeters; in the other, equal to or less than 2
centimeters. A 3-centimeter block-free zone separates the two sets.

Next, each of the two sets is divided by width alone. The tall set is
divided into one set in which all widths are equal to or greater than 5
centimeters, and another set in which all widths are equal to or less than 2

404 Chapter 19 Learning by Recording Cases

Figure 19.5 The case sets
are divided horizontally and
vertically until only one block
remains in each set.

Red Yellow
6 ° .
Orange Purple
[.
Height 4
Red Blue
2] °
Violet Green
. °
0
0 2 4 6
Width

centimeters. Similarly, the bottom set is divided into one set of blocks 2
centimeters or less, and one set of blocks 4 centimeters or greater.

Finally, each of those four sets is divided by height alone, producing
eight sets of just one block each.

The overall result is called a k-d tree, where the term k-d is used to
emphasize that distances are measured in k dimensions:

A k-d tree is a representation
That is a decision tree
In which

> The set of possible answers consists of points, one of which may
be the nearest neighbor to a given point.

> Each test specifies a coordinate, a threshold, and a neutral zone
around the threshold containing no points.

> Each test divides a set of points into two sets, according to on
which side of the threshold each point lies.

To determine the nearest neighbor of U, you first note that U’s height
is more than 3.5 centimeters, which is the middling height between the

A Fast Serial Procedure Finds the Nearest Neighbor in Logarithmic Time 405

shortest tall block and the tallest short block. From this observation, you
conclude that U is more likely, albeit not certain, to be nearer to one of the
tall blocks than to one of the short blocks. On this ground, you temporarily
ignore the short blocks.

Because the tallest short block is 2 centimeters tall, the distance be-
tween U and the tallest short block is at least 2 centimeters, and maybe is
more, because the difference in height alone is 2 centimeters, as is evident
in the top part of figure 19.6. If U proves to be equal to or less than 2
centimeters from a tall block, your decision temporarily to ignore the short
blocks will become a permanent decision. If U is more than 2 centimeters
from a tall block, you will have to reconsider the short blocks eventually.

Next, you consider the tall blocks, which are themselves divided into
two sets. Because U’s width is less than 3.5 centimeters, U is more likely,
albeit not certain, to be nearer to one of the narrow tall blocks than to one
of the wide tall blocks. On this ground, you temporarily ignore the wide
tall blocks.

As illustrated in the middle part of figure 19.6, if U proves to be equal
to or less than 4 centimeters from a narrow tall block, your decision tem-
porarily to ignore the wide tall blocks will become a permanent decision,
because the width of U differs by 4 centimeters from the width of the
narrowest wide tall block.

One more step puts the unknown with the short, narrow, tall blocks, of
which there is only one, the orange block, as illustrated in the bottom part
of figure 19.6. If U proves to be equal to or less than 2 centimeters from
the orange block, there is no need to calculate the distance to the narrow
tall red block, which differs from U by 2 centimeters in height alone.

Now it is clear that the nearest block is the orange one, at a distance of
1.41 centimeters, provided that all previous decisions turn out to be justi-
fied. In this example, those decisions are justified because 1.41 centimeters
is less than 2 centimeters, justifying the rejection of the narrow tall red
block; it is less than 4 centimeters, justifying the rejection of the yellow
and purple blocks; and it is less than 2 centimeters, justifying the rejection
of all the short blocks.

Finding the nearest block is really just a matter of following a path
through a decision tree that reflects the way the objects are divided up
into sets. As the decision tree in figure 19.7 shows, only three one-axis
comparisons are required to guess the nearest neighbor in the example, no
matter what the width and height of the unknown are. Once the distance
to the guessed nearest neighbor is calculated, only three more comparisons
are needed to validate the decisions that led to the guess if it is correct. If
you are unlucky, and the guess is wrong, you have to look harder, working
down through the sets that have been ignored previously.

In general, the decision tree with branching factor 2 and depth d will
have 2¢ leaves. Accordingly, if there are n objects to be identified, d will

406 Chapter

19 Learning by Recording Cases

Figure 19.6 in the top part,
unknown U cannot be closer
than 2 centimeters to any block
in the bottom set, because

the height of block U is 4
centimeters and the height of
the tallest block in the bottom
set is 2 centimeters. In the
middle part, the remaining
cases are divided into two

sets. In one set, all widths are
greater than 3.5 centimeters;

in the other, less than 3.5
centimeters. Because the width
of block U is 1 centimeter and
the width of the narrowest block
in the right set is 5 centimeters,
block U cannot be closer than 4
centimeters to any block in

the right set. Finally, in the
bottom part, only two cases
remain. Because the height of
block U is 4 centimeters and
the height of the red block is 6
centimeters, block U cannot be
closer than 2 centimeters to the

red block.
- -]

Height

Height

Height

4

4

Red Yellow
. L]
Orange Purple
L] L
U
©
©
N
i Biue
L[]
Red
Violet Green
L] L]
2 4 6
Width
Red Yellow
L] .
Orange Purple
L] L]
U
4.00
2 4 6
Width
Red
-I—]
T
g OIange
o~
ol
2 4 6

Width

A Fast Serial Procedure Finds the Nearest Neighbor in Logarithmic Time

407

Figure 19.7 The complete
k-d tree for identifying a new
block’s nearest neighbor.

Height > 3.57

No
Height > 1.5?
o

N

No
Height >5.57
No

Violet Red Green Blue Orange Red Purple

Yes
Hieght > 5.5?

Yes

Yellow

have to be large enough to ensure that 2¢ > pn. Taking the logarithm
of both sides, it is clear that the number of comparisons required, which
corresponds to the depth of the tree, will be on the order of log, n. If there
are eight objects, the saving does not amount to much. If there are 1 billion
objects, however, the number of comparisons is on the order of 30, not 1

billion, which is a substantial saving.

Here is the procedure for dividing the cases into sets, building a decision

tree along the way:

To divide the cases into sets,
> If there is only one case, stop.

> If this is the first division of cases, pick the vertical axis
for comparison; otherwise, pick the axis that is different
from the axis at the next higher level.

> Considering only the axis of comparison, find the average
position of the two middle objects. Call this average posi-
tion the threshold, and construct a decision-tree test that
compares unknowns in the axis of comparison against the
threshold. Also note the position of the two middle ob-
jects in the axis of comparison. Call these positions the
upper and lower boundaries.

> Divide up all the objects into two subsets, according to
on which side of the average position they lie.

> Divide up the objects in each subset, forming a subtree
for each, using this procedure.

408

Chapter

19 Learning by Recording Cases

Of course, the procedure for finding the nearest neighbor must address the
possibility that previously ignored choices will have to be examined. Its
common name is the K-D procedure:

To find the nearest neighbor using the K-D procedure,

> Determine whether there is only one element in the set
under consideration.

> If there is only one, report it.

> Otherwise, compare the unknown, in the axis of com-
parison, against the current node’s threshold. The re-
sult determines the likely set.

> Find the nearest neighbor in the likely set using this
procedure.

> Determine whether the distance to the nearest neighbor
in the likely set is less than or equal to the distance to
the other set’s boundary in the axis of comparison:

> If it is, then report the nearest neighbor in the likely
set.

> If it is not, check the unlikely set using this procedure;
return the nearer of the nearest neighbors in the likely
set and in the unlikely set.

Parallel Hardware Finds Nearest Neighbors Even Faster

If you happen to have a massively parallel computer, with so many pro-
cessors that each case can have its own, then none of this fancy search is
needed. Each distance measurement can proceed in parallel.

Of course, all the results have to be compared somehow to find the
case with the minimum distance from the unknown. One way to do this
comparison would be to have neighboring processors compare their results.
Then each two-processor minimum would be compared with a neighboring
two-processor minimum. Carrying on this way eventually would lead to the
global minimum after on the order of log, n sequential steps, where n is
the number of distances to be compared. There are better ways, however,
that find the minimum distance in constant time on a parallel computer.

SUMMARY

® The consistency heuristic is the justification for the use of remembered
cases as sources of properties for previously unseen objects.

@ Remembered cases can help you to solve many difficult problems, in-
cluding problems in dynamic arm control.

Background 409

m The K-D procedure is a fast serial procedure that finds nearest neigh-
bors in logarithmic time.

m Parallel hardware can find nearest neighbors even faster than the K-D
procedure can.

BACKGROUND

The discussion of K-D trees is based on the work of Jerome H. Friedman
and colleagues [1977].

The discussion of arm control is based on the work of Chris Atkeson
[1990]. Atkeson’s more recent work does not involve K-D trees, however;
instead, he has developed fast hardware that essentially interpolates among
all cases.

