Learning by
Analyzing
Differences

In this chapter, you learn how it is possible to learn by analyzing the
differences that appear in a sequence of observations. Along the way, you
learn about induction heuristics that enable procedures to learn class de-
scriptions from positive and negative examples. These induction heuristics
make it possible, for example, to learn that an arch consists of one brick
that must be supported by two others that must not touch each other.t
Among the heuristics needed are the require-link and forbid-link heuristics,
which enable learning about classes from near-miss examples that miss
being class members for a small number of reasons.

You also learn about felicity conditions, which are the implied covenants
between teachers and students that make learning possible.

By way of illustration, you learn about a simple learning program that
expects a cooperative teacher to present carefully chosen examples, one
after another. The procedure learns whatever it can from each example as
the example is presented, and then forgets the example forever.

Once you have finished this chapter, you will have accumulated an
armamentarium of induction heuristics, and you will have an understanding
of the covenants that must hold between a teacher and a student. You will
be able to use these ideas not only to build learning programs, but also to
make yourself a more perceptive student and a more effective teacher.

fProperly speaking, one brick supported by two others is a lintel and pair of posts;
for our purpose, however, that is just a nugatory detail.

349

350 Chapter 16 Learning by Analyzing Differences

Figure 16.1 A sequence of
positive examples and near-
miss negative examples for Arch

learning about arches.
]

Near miss

Near miss

Arch

INDUCTION HEURISTICS

Induction occurs when you use particular examples to reach general con-
clusions. In this section, you learn about the induction heuristics used
by a procedure, W, that learns about arches from the Arch and nonArch se-
quence shown in figure 16.1. You also learn about several powerful learning
ideas that apply to human learning, as well as computer learning.

From the first example in figure 16.1, procedure W derives a general
idea of what an arch is. In particular procedure W learns that an arch
consists of two standing bricks that support a lying brick.

Each subsequent example drives home another point. In the second
example, procedure W sees the same objects as before, but in a different
configuration. Told that the pieces are not an arch, procedure W takes the
example to be a negative example, and concludes that the support links
must be an important aspect of the general arch concept. Note that the

Responding to Near Misses Improves Models 351

idea is conveyed by a single, well-chosen negative example, rather than by
extended, tedious training exercises.

In the third example, the two standing bricks touch. Again, procedure
W is told that the structure is not an arch. Nothing else is significantly
different from the first arch in the example sequence. Evidently, the stand-
ing bricks must not touch if there is to be an arch. Procedure W makes
progress once again by way of a good negative example.

A teacher may or may not claim the fourth example is an arch, accord-
ing to personal taste. If it is given as an arch, then procedure W notes that
having a brick on top is not essential. At the very least, either a brick or a
wedge will do; procedure W may even guess that any simple parallelepiped
is acceptable.

Responding to Near Misses Improves Models

To do its job, procedure W needs to start with a typical member of the
class to be learned. From that example, procedure W constructs an initial
description, as shown in figure 16.2(a). During learning, the initial de-
scription is augmented by information indicating which links are important.
The augmented description is called the evolving model.

A near miss is a negative example that, for a small number of reasons,
is not an instance of the class being taught. The description shown in
figure 16.2(b) is not a description of an arch, but, because it is only a little
different from the arch description in figure 16.2(a), it is a near miss. Its
purpose is to teach the importance of the Support links.

Because the Support links are missing, comparing the two descriptions
leads procedure W to the conclusion that arches require Support links.
Thus, procedure W synthesizes the two descriptions into a new, refined
description in which the Support links are replaced by the emphatic form,
Must-support, as in figure 16.2(c). Used in this way, the near miss is said
to supply information for the require-link heuristic. After procedure W
uses the require-link heuristic, no group of blocks is identified as an arch
unless Support links are in place.

Note that the two missing Support links associated with the near miss
in figure 16.2(b) receive identical treatment. Generally, procedure W uses
only one difference—either the only one or the one procedure W decides
is most important. Sometimes, however, two or more differences are so
similar, that they are handled as though they were just one difference.
Procedure W’s reaction is to suppose that the teacher intended the two
differences to be handled in the same way. Thus, both Support links are
replaced by Must-support.

The next comparison, the one between the evolving model in fig-
ure 16.3(a) and the near-miss in figure 16.3(b), also involves two simi-
lar differences because two new Touch links lie between the arch’s sides.
Now, however, the near miss fails to be an arch because links are present

352 Chapter 16 Learning by Analyzing Differences

Figure 16.2 The require-link
generalization rule. Compared
with the Arch description in (a), (a) Arch
the near-miss description in

(b) lacks Support links. The
conclusion is that Support links
are essential, so the Support
links in the Arch model are
altered, indicating that they left-of
are required in all arches,

as shown in (c). The Left-of
link is shown to emphasize

the need for evidence that is
sufficient to establish the correct
correspondence between the
parts of the arch and the parts
of the near miss. Many links
have been omitted from the
drawing to prevent distraction

from those that matter.
]

support support

(b) Near miss

left-of

(c) Arch

must-support must-support

left-of

rather than absent. Procedure W concludes that the new links should be
forbidden, and converts each Touch link to the negative emphatic link,
Must-not-touch, as shown in figure 16.3(c). In so doing, procedure W is
said to make use of the forbid-link heuristic.

Note that the require-link and forbid-link heuristics work because the
descriptions contain essential information and because description compar-

Responding to Near Misses Improves Models 353

Figure 16.3 The forbid-link
generalization rule. Compared
with the Arch description in part
(a), the near-miss description in
part (b) differs because it has
Touch links. The conclusion

is that the Touch links must

not be present, so Must-not-
touch links are added to the
Arch description as shown in
part (c). Many links have been
omitted from the drawing to
prevent distraction from those
that matter.

(a) Arch

must-support must-support

left-of

(b) Near miss

must-support

‘\must-suppon
[\ touch

left-of
touch /

(c) Arch
must-support

must-support

left-of

x must-not-touch

must-not-touch

354 Chapter 16 Learning by Analyzing Differences

ison provides a way of zeroing in on the proper conclusions. These points
bear elevation to principles:

You cannot learn if you cannot know.

> Good teachers help their students by being sure that their
students acquire the necessary representations.

You cannot learn if you cannot isolate what is important.

> Good teachers help their students by providing not only
positive examples, but also negative examples and near
misses.

Responding to Examples Improves Models

So far, both near-miss examples restrict the model, limiting what can be an
arch. Positive examples relaz the model, expanding what can be an arch.
Consider the situation of figure 16.4. Compared to the evolving model in
figure 16.4(a), the example configuration in figure 16.4(b) has a wedge on
top instead of a brick. If this is to be an arch, procedure W must make
a change in the model that reflects a loosened constraint. At the very
least, procedure W should cut the Is-a connection between the top of the
arch and Brick, and replace that connection by a Must-be-a link to a more
general class, as shown in figure 16.4(c). Procedure W is said to use the
climb-tree heuristic.

Using the most specific common class is only one alternative, however.
In the example, replacing Brick by Block represents a conservative position
with respect to how much generalization procedure W should do, because
bricks and wedges are also polyhedra, physical objects, and things. The
new target for the top’s Must-be-a link could be anything along the chain
of Ako links, depending on how aggressive procedure W is to be.

Sometimes, however, there is no classification tree to climb. For exam-
ple, if bricks and wedges were not known to be members of any common
class, the climb-tree heuristic would not be of any use. In such a case,
procedure W forms a new class, the Brick-or-wedge class, and joins the
top part of the arch to this new class with Must-be-a, thereby using the
enlarge-set heuristic.

If there are no objects other than bricks and wedges, however, proce-
dure W gets rid of the Is-a link completely, and is said to use the drop-link
heuristic.

Procedure W also uses the drop-link heuristic when a link in the evolv-
ing model is not in the example. If the initiating example has color in-
formation for some blocks and the other examples do not, procedure W
ignores color, dropping all color references from the evolving model.

Near-Miss Heuristics Specialize; Example Heuristics Generalize 355

Figure 16.4 The climb-tree
heuristic. The top of the Arch
description in part (a) is a brick,
while the corresponding object
in the example description in
part (b) is a wedge. Evidently,
the difference does not matter.
The Is-a link in the Arch left-of
description is changed to a <) must-not-touch (>
Must-be-a link and redirected
from Brick to Block, as shown
in part (c), which is the most
specific common generalization

(a) Arch

must-support must-support

must-not-touch

of Brick and Wedge. Many links (b) Arch
have been omitted from the
drawing to prevent distraction must-support must-support

from those that matter.

(> left-of : >
X must-not-touch >

must-not-touch

() Arch ‘ must-be-a @

must-support must-support

< > left-of (>
X must-not-touch)

must-not-touch

Finally, procedure W uses another heuristic if a difference involves
numbers. If one example exhibits a 10-centimeter brick, and another ex-
hibits a 15-centimeter brick, then procedure W supposes that bricks of any
length between 10 centimeters and 15 centimeters will do, thus using the
close-interval heuristic.

Near-Miss Heuristics Specialize; Example Heuristics Generalize

Having seen how procedure W uses induction heuristics, it is time to sum-
marize. Note that the near-miss heuristics, require link and forbid link,
both specialize the model, making it more restrictive. The positive-example
heuristics all generalize the model, making it more permissive.

356

Chapter

16 Learning by Analyzing Differences

The require-link heuristic is used when an evolving model has a link
in a place where a near miss does not. The model link is converted to
a Must form.

The forbid-link heuristic is used when a near miss has a link in a
place where an evolving model does not. A Must-not form is installed
in the evolving model.

The climb-tree heuristic is used when an object in an evolving model
corresponds to a different object in an example. Must-be-a links are
routed to the most specific common class in the classification tree above
the model object and the example object.

The enlarge-set heuristic is used when an object in an evolving model
corresponds to a different object in an example and the two objects are
not related to each other through a classification tree. Must-be-a links
are routed to a new class composed of the union of the objects’ classes.

The drop-link heuristic is used when the objects that are different
in an evolving model and in an example form an exhaustive set. The
drop-link heuristic is also used when an evolving model has a link that
is not in the example. The link is dropped from the model.

The close-interval heuristic is used when a number or interval in
an evolving model corresponds to a number in an example. If the
model uses a number, the number is replaced by an interval spanning
the model’s number and the example’s number. If the model uses an
interval, the interval is enlarged to reach the example’s number.

Here then are the procedures that use these heuristics:

To use SPECIALIZE to make a model more restrictive,

> Match the evolving model to the example to establish

correspondences among parts.

> Determine whether there is a single, most important dif-

ference between the evolving model and the near miss.
> If there is a single, most important difference,

> If the evolving model has a link that is not in the
near miss, use the require-link heuristic.

> If the near miss has a link that is not in the model,
use the forbid-link heuristic.

> Otherwise, ignore the example.

Learning Procedures Should Avoid Guesses 357

To use GENERALIZE to make a model more permissive,

> Match the evolving model to the example to establish
correspondences among parts.

> For each difference, determine the difference type:

> If a link points to a class in the evolving model different
from the class to which the link points in the example,

> If the classes are part of a classification tree, use the
climb-tree heuristic.

> If the classes form an exhaustive set, use the drop-
link heuristic.

> Otherwise, use the enlarge-set heuristic.

> If a link is missing in the example, use the drop-link
heuristic.

> If the difference is that different numbers, or an interval
and a number outside the interval, are involved, use the
close-interval heuristic.

> Otherwise, ignore the difference.

Note that SPECIALIZE does nothing if it cannot identify a most important
difference. One way to identify the most important difference is to use a
procedure that ranks all differences by difference type and by link type.
Another way is described in Chapter 18.

Note also that both SPECIALIZE and GENERALIZE involve matching.
For now, be assured that there are matching procedures that tie together
the appropriate nodes. One such matching procedure is described in Chap-
ter 17.

Learning Procedures Should Avoid Guesses

As described, procedure W uses examples supplied by a teacher in an order
decided on by that teacher. The learner analyzes each example as it is given;
the learner does not retain examples once they are analyzed:

To learn using procedure W,

> Let the description of the first example, which must be
an example, be the initial description.

> For all subsequent examples,
> If the example is a near miss, use procedure SPECIALIZE.
> If the example is an example, use procedure GENERALIZE.

358

Chapter

16 Learning by Analyzing Differences

As given, procedure W never unlearns something it has learned once. In
principle, procedure W could unlearn, but deciding exactly what to unlearn,
such that nothing breaks, is hard. Consequently, it is better not to learn
something that may have to be unlearned:

The wait-and-see principle:
> When there is doubt about what to do, do nothing.

It may seem excessively conservative to refuse to act because no act is
absolutely safe. There is a point, however, where risk taking becomes fool-
hardiness. Honoring the wait-and-see principle, a learner is not condemned
to eternal stupidity; the learner is merely expecting to encounter difficult
situations again, later, when the learner is better prepared.

Procedure W honors the wait-and-see principle when it ignores negative
examples for which it cannot identify a single or most-important difference.

Procedure W’s teacher can help procedure W to avoid the need to
ignore negative examples by ensuring that the negative examples are bona
fide near misses. Alternatively, the teacher and the student can agree on
how difference types should be ranked so that the difference that seems
most important to the student actually is important from the perspective
of the teacher. Learning-facilitating teacher—-student agreements are called
felicity conditions, especially if they are implied, rather than expressed.

Even with elaborate felicity conditions, however, there will be situa-
tions when a model is not consistent with an example, even though the
model is basically correct. Penguins, for example, are birds, even though
penguins cannot fly. In such situations, the way out is to honor another
principle:

The no-altering principle:

> When an object or situation known to be an example fails
to match a general model, create a special-case exception
model.

Thus, the wait-and-see principle says to avoid building a model that will be
wrong, and the no-altering principle says to avoid changing a model, even
if it is wrong, again because fixing a general model in one way is likely to
break it in another.

Learning Usually Must Be Done in Small Steps

Procedure W works because it exploits the knowledge it has, adding to
that knowledge in small steps using new examples.

Skillful teachers know that people learn mostly in small steps, too. If
there is too much to figure out, there is too much room for confusion and
€rror:

Models May Be Arranged in Lists or in Nets 359

Martin’s law:

> You cannot learn anything unless you almost know it al-
ready.

IDENTIFICATION

In the previous section, you saw what procedure W can learn about objects.
In this section, you learn how identification methods can use what has been
learned by matching unknown objects to appropriate models.

Must Links and Must-Not Links Dominate Matching

One way to determine whether an unknown matches a model adequately
is to see whether the unknown is compatible with the model’s emphatic
links. Any links with names prefixed by Must must be in the unknown;
and links prefixed by Must-not must not be in the unknown.

More flexible match evaluation requires a procedure that can judge the
degree of similarity between an unknown and a model. To implement such
a procedure, you have to translate the abstract notion of similarity between
an unknown and a model, s(U, M), into a concrete measurement. One sim-
ple way of doing this translation, by a weighted counting of corresponding
links, was described in Chapter 2 in connection with a geometric-analogy
procedure. Note, however, that any counting scheme for combining evi-
dence is limited, because all information is compressed into a singularly
inexpressive number.

Models May Be Arranged in Lists or in Nets

Given a mechanism for matching an unknown with a model, the next is-
sue is how to arrange the models for testing. We consider two of many
possibilities: model lists and similarity nets.

Matching the unknown with the models in a model list was called the
describe-and-match method in Chapter 2. Tt is a reasonable approach only
if the number of models is small.

Another approach to arranging models is to use a similarity net.
Imagine a set of models organized into a net in which the links connect
model pairs that are very similar. Now suppose that an unknown object
is to be identified. What should be done when the first comparison with
a particular model in the net fails, as it ordinarily will? If the match does
not fail by much—that is, if the unknown seems like the model in many
respects—then surely other similar models should be tried next. These new
similar models are precisely the ones connected by similarity links to the
just-tried model.

ARIEL Learns about Proteins

Increasingly, an impressive demonstration on a real problem is the sine qua non
of successful research in artificial intelligence. Sometimes, the demonstration
involves a program and a human expert working in tandem to do some task that
neither could do independently.

In molecular biology, for example, the ARIEL program acts as a partner to
human biologists, helping them to improve patterns that predict protein function.
Before you learn how ARIEL works, you may find it helpful to review a little
elementary protein biology.

First, proteins consist of one or a few long chains called polypeptides.
Each link in a polypeptide chain is one of the 20 amino acids.

The primary structure of a protein is a specification of how the various
amino acids are arranged in the polypeptide chain.

Here, for example, is a fragment a polypeptide produced by an AIDS virus:

-a-g-k-k-k-k-s-v-t-v-1-d-v-g-d-a-y-f-s-v-p-l-d-k-d-f-r-k-y-t-a-f-t-i-p-

The secondary structure is a specification of how various short segments
in the chain fold up into small configurations, which have names such as alpha
helix, beta strand, and beta turn. The example polypeptide fragment happens
to contain several alpha helixes, beta strands, and beta turns.

The enzymatic activity of a protein is determined by its tertiary structure,
a complete description of how it folds up in space—which ultimately depends,
of course, on the primary structure of the polypeptides in the protein. As yet,
however, no one knows how to use the primary structure to predict exactly how a
protein will fold up. Nevertheless, a molecular biologist can predict that a protein
will have certain functional properties by looking for characteristic patterns in the
primary and secondary structure. One such characteristic pattern, refined with
help from ARIEL, determines that a matching protein is likely to help duplicate
DNA molecules, the ones that carry the genetic code:

DNA polymerase rule

If There is a small amino acid followed by
a beta strand followed by
a hydrophobic amino acid followed by
an aspartic acid followed by
a hydrophobic amino acid followed by
an aromatic amino acid followed by
a beta strand followed by
a beta strand

then the protein is likely to be a DNA polymerase

Note that the pattern involves primary structure, in that it specifies amino-acid
classes, as well as secondary structure, in that it specifies beta strands, which are
identified, in turn, by an analysis of primary structure. The pattern happens to
match the example primary-structure fragment from the AIDS virus.

ARIEL is able to improve such recognition patterns by artfully deploying
induction heuristics, beam search, and parallel testing. The induction heuristics
are used to perturb an existing pattern in the hope of producing a more reliable
pattern. Typically, a human biologist asks ARIEL to try a variation on the
climb-tree heuristic on a particular amino acid specified in the pattern, producing
one new pattern for each of the many possible generalizations in the amino-acid
classification tree.

None of these new patterns is perfect when tested on a database of about
50 examples and several hundred nonexamples. Instead, each pattern recognizes
some fraction of the examples and rejects some fraction of the nonexamples. In
the diagram that follows this text, you see that the seed pattern, indicated by
the black dot, recognizes about 89 percent of the examples, and rejects about 80
percent of the nonexamples.

Also shown, by open circles, are the places occupied by new patterns derived
from the seed pattern. Among these, the best are the ones that are closest to
the upper-right corner, where all examples are recognized and all nonexamples
are rejected.

Of course, it can take a lot of time to locate all the patterns on the recognize—
reject diagram, for each induction heuristic can produce tens of possible patterns,
each of which has to be tested on hundreds of examples and near-miss negative
examples. In practice, given today’s technology, this kind of pattern testing is
best done on a parallel computer, such as a Connection Machine LM,

Once all the patterns are evaluated, a few of the best are kept for further
analysis, and the rest are rejected. Then the human biologist specifies another
induction heuristic for ARIEL to try on the surviving patterns. Thus, ARIEL
and the human biologist work their way through the space of derivative patterns
using beam search.

After moving through a few layers of the beam search, ARIEL and the human
biologist usually can do no more, halting with a family of patterns that are better
than the seed pattern originally supplied by the human biologist.

e Q..
@ """" O ,,,,,,,,,,,,,,, ')

e e
% Envelope of alternate patterns Q
D following induction step Y :
[7:3
2 7
2
-4 Seed pattern
50% (JD

0% 100%

Positives recognized

362 Chapter 16 Learning by Analyzing Differences

Figure 16.5 Identification
using a similarity net. Progress
from hypothesis to hypothesis

is guided by comparison of
difference descriptions. M80

is presumed to be the first
hypothesis tried. M12 is next if
the difference between M12 and
M80 is much like the difference

d(U, M8o

o

d(M12, M80)
)

between the unknown, U, and

M80.

\

d(M33, M80)

In an obvious improvement, the similarity links between models can
not only convey similarity, but also describe the difference, as stipulated in
the following representation specification:

A similarity net is a representation
That is a semantic net

In which

> Nodes denote models.

> Links connect similar models.

> Links are tied to difference descriptions.

Figure 16.5 illustrates a similarity net. If an unknown differs from a test
model in the same way that a neighbor of the test model differs from the
test model, then that neighbor is a particularly good model to test next.
Thus, attention moves not only to a family of likely candidates, but also
to the particular member of that family that is most likely to lead toward
success. Accordingly, the initial match is not so much a failure as it is an
enlightening knowledge probe.

Finally, note that the procedure for moving through a similarity net is
a hill-climbing procedure because movement is to the immediate neighbor
that seems most likely to yield an improved match with the unknown.

SUMMARY

m One way to learn is to declare an initial example to be your initial
model. Then, you improve the initial model incrementally using a
series of examples.

Background 363

8 Some examples should be negative, near-miss examples. These exam-
ples enable you to zero in on just what it is about the evolving model
that is essential, thus specializing the model.

B Require link and forbid link are specialization heuristics.

® Some examples should be positive examples. These enable you to gen-
eralize the model.

B Climb tree, enlarge set, drop link, and close interval are generalization
heuristics.

® You cannot learn if you cannot isolate what is important. Good teach-
ers help you by providing not only positive examples, but also negative
examples and near misses.

® You should avoid guessing when you learn, because a bad guess may
be hard to root out later on. One way to avoid guessing is to create a
special-case exception when an ob ject or idea known to be an example
fails to match a general model.

B Martin’s law says that you cannot learn anything unless you almost
know it already.

BACKGROUND

The work described in this chapter is based on early work by Patrick H.
Winston that introduced many induction heuristics, along with the near-
miss idea [Winston 1970).

Subsequently, other researchers have offered improved procedures for
using specializing and generalizing induction heuristics. In particular, most
of the induction-heuristic names are adapted from the work of Ryszard S.
Michalski [1980]. Michalski’s INDUCE system includes several additional
induction heuristics, many of which deal with chains of links and properties
of groups.

The no-altering principle is my name for one of Marvin Minsky’s laws
of noncompromise discussed in The Society of Mind, Minsky’s seminal
book on artificial intelligence [1985].

Martin’s law is an idea that was expressed by William A. Martin in
Dubrovnik, Yugoslavia, in 1979.

The discussion of similarity nets is based on an idea by Winston [1970),
subsequently developed by David L. Bailey [1986].

ARIEL is the work of Richard H. Lathrop [1990].

