Symbolic Constraints
and Propagation

In this chapter, you learn how symbolic constraint-propagation proce-
dures can determine the consequences of interacting constraints.

By way of illustration, you learn about a program that interprets draw-
ings, and about another program that finds relations among time intervals.

Once you have finished this chapter, you will know that, when a domain
is well understood, it is often possible to describe the objects in the domain
in a way that uncovers useful, interacting constraints. You will also know
how to use Marr’s methodological principles when you work on difficult
problems.

PROPAGATION OF LINE LABELS
THROUGH DRAWING JUNCTIONS

In this section, you learn about propagating symbolic labels through nets.
In particular, you learn about symbolic constraint propagation in the con-
text of understanding drawings of plane-faced objects, such as those in
figure 12.1. The main problem is to determine which lines are bound-
ary lines that separate objects. You see that boundary, convex, concave,
shadow, and crack lines come together at junctions in only a few ways, and
then you see that this restriction on junction combinations determines the
proper physical interpretation for each line in a drawing. Once correct line
interpretations are known, it is easy to use known boundary lines to divide
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Figure 12.1 Part of drawing
analysis is to decide how each

line in a drawing should be
interpreted.

I’&

the drawing into objects. Along the way, you see that some impossible
drawings can be detected, because there is no way to interpret all the lines
consistently.

There Are Only Four Ways to Label a Line in
the Three-Faced-Vertex World

Consider a world populated by crack-free polyhedra with lighting arranged
to eliminate all shadows. The lines in drawings of this world represent
various naturally occurring edge types. A simple partitioning of these lines
is shown in figure 12.2.

All lines are divided into boundary lines and interior lines. Boundary
lines occur where one object face hides the other. The two regions in the
drawing separated by a boundary line do not abut along the boundary line.
Interior lines are those for which the two separated regions do abut one
another. The interior lines are those that are associated with concave edges
and those that are associated with convex edges.

For notational convenience, line interpretations are identified on draw-
ings by line labels. There are three such labels:

Line Label
Convex +
Concave -

Boundary >

You determine the direction of the boundary line label by noting which side
of the line corresponds to a face of the object causing the boundary line.
Imagine taking a stroll along the line, keeping the boundary-line object on
the right. The direction of walking is the direction of the boundary label.
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Figure 12.2 Drawings consist
of boundary lines and interior
lines. The interior lines may be
concave or convex.

Concave
edges

Figure 12.3 An L-shaped
solid illustrates the three basic
line interpretations: convex
lines, marked with plus labels;
concave lines, marked with
minus labels; and boundary
lines, marked with boundary

labels.
. ]

Combinations of line labels surrounding junctions are called junction
labels. Natural constraints severely limit the number of junction labels
that are physically realizable.

It is easy to label each of the lines in figure 12.3 such that all the
junction labels are physically realizable by using your intuition. By so
labeling a drawing, you exploit your understanding of the physical situation
to arrive at interpretations for the lines. The key idea to pursue now is that
of turning the process around, using knowledge about allowable junction
labels to derive an understanding of the physical reality.

Accordingly, you need a catalog of physically realizable junctions. To
keep straight the distinction between a drawing and the actual physical
world, note that junctions in drawings denote physical vertexes in the
world, and lines denote physical edges.
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Figure 12.4 The common

junctions. Those on the right
are excluded if vertexes are all \/
three-faced vertexes and there L

are no shadows or cracks.

Arrow Peak

<

Fork

h

Si

<A

Junctions can be categorized according to the number of lines coming
together and the size of the angles between the lines. Figure 12.4 assigns
mnemonic names to the common categories.

Fortunately, the following simple assumptions exclude all junctions
other than Forks, Arrows, Ls, and Ts:

® Limited line interpretations: There are no shadows or cracks.
®  Three-faced vertexes: All vertexes are the intersection of exactly three

object faces. The vertexes at the top of the Great Pyramids of Egypt
are forbidden. The vertexes in figure 12.5 are allowed.
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Figure 12.5 Some objects
with exclusively three-faced

vertexes.
R

Figure 12.6 The criterion

of general viewing position
excludes both of these
configurations because any
perturbation of the viewing
position changes the junctions
indicated. On the left, you see
the front and top of a cube,

viewed without perspective.
L. ]

9 e

B General position: The choice of viewpoint is such that no junctions
change type with a small change of viewpoint. The viewpoints in fig-
ure 12.6 are forbidden.

These assumptions are in force only temporarily; later, they will be relaxed.
The reason that these assumptions help you is that they reduce the number
of junction possibilities and hence the number of interpretations possible
for junction-surrounding lines.

Now, because there are four ways to label any given line, there must
be 42 = 16 ways to label an L. Similarly, there must be 43 = 64 ways
to label any particular Fork, Arrow, or T. Thus, the upper bound on the
number of junction labels is 208. Curiously, only 18 of these combinations
are physically realizable. It is not possible, for example, to find the junc-
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Figure 12.7 Some junction
labels not found in drawings
of polyhedra with three-faced
vertexes.

il BN T

Y
A

tion labels of figure 12.7 in drawings of real polyhedral objects, given our
assumptions.

The next job is to collect the junction labels that are possible. There
are only six for Ls, five for Forks, four for Ts, and three for Arrows. Once
you have them, analyzing drawings is like working easy jigsaw puzzles.

There Are Only 18 Ways to Label a Three-Faced Junction

At first, it might seem crazy to think that you can build a junction catalog
containing all physically realizable junction labels by looking at every possi-
ble three-faced physical vertex from every possible direction. Fortunately,
forbidding all but general viewing positions makes the task manageable,
and assuming that drawings contain only three-faced vertexes makes the
task easy.

The three faces of any three-faced vertex define three intersecting
planes, and three intersecting planes divide space into eight octants, as
shown in figure 12.8. An object forming a vertex plainly must occupy one
or more of the eight octants so formed. Accordingly you can make a com-
plete junction catalog by a two-step process: consider all ways of filling up
eight octants with object material; and view each of the resulting vertexes
from the unfilled octants.

Of course, if no octants are filled, or if all are filled, then there is no
vertex, and consequently, there is nothing to consider. But suppose seven
of the eight are filled, as in the left half of figure 12.9. Evidently, the seven-
octant situation validates a Fork junction label in which each of the three
lines involved bears a minus label. Note that the only junction of interest
in the drawing is the one in the center. The surrounding drawing is only
a visual aid to understanding how the seven filled octants produce a single
drawing junction. Note further that, because seven octants are filled, there
can be only one octant from which to look at the vertex. The junction
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Figure 12.8 The three faces
of a three-faced vertex divide
space into eight octants. Here
the planes meet at right angles.

They need not.
|

Figure 12.9 Junctions seen
when seven octants are filled
or when one is. On the left,
the three concave lines are
seen, no matter where the
viewer stands within the one
available viewing octant. On
the right, the view from one
octant is such that there is a
Fork surrounded by convex

labels.
. ]

type seen is a Fork, no matter what particular position is taken within the
viewing octant. Also, the planes forming the octants do not need to be at
right angles.

Fortunately, invariance within a viewing octant and indifference to
plane angle hold in general. The junction type does not change as the
viewpoint moves within one viewing octant or as the angles between the
planes change.

So far, the junction catalog has but one entry, a Fork. One new entry is
suggested by the right half of figure 12.9, in which the junction of interest is
surrounded again by a drawing that provides a visual aid to understanding
just what is filled and what is empty. From the point of view shown,
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Figure 12.10 Stick figures
help to show what a one-

octant vertex looks like from T
various viewpoints. Because of
symmetry, the seven viewing

octants yield only three different L
labels. These three viewpoints R

yield one L and one Arrow.

Y
A\ 4

the vertex appears as a Fork junction with each line labeled with a plus.
Because only one octant is filled, however, there must be seven from which
to look, and so far you have seen only the junction label derived from the
octant diagonally opposite the stuff of the object.

Consequently, positions must be taken in the six other octants. Three
of these are the positions occupied by the stick figures in figure 12.10. Two
stick figures on stilts, shown in figure 12.11, occupy two positions above the
plane defined by the top of the cube. And one final stick figure, standing
on top of the cube, occupies the final position. All six stick-figure views
provide only two new junction labels, because three of the views produce
one kind of Arrow, and the other three produce one kind of L.

Now consider the situations with two, four, or six octants filled. All
are excluded by the initial three-faced presumption. Suppose, for example,
that two octants are to be filled. If the two were adjacent, then the edges
between them would be cracks, there would be four object faces at the
central vertex, and the vertex would not be three-faced. If the two filled
octants were not adjacent, then they would meet either along an edge or at
a common point. Either way, there would be more than three faces at the
central vertex. Similar arguments exclude the four- and six-octant cases,
leaving only the three- and five-octant cases to be considered.
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Figure 12.11 Stick figures
help to show what a one-
octant vertex looks like from
various viewpoints. Because of
symmetry, the seven viewing
octants yield only three different

labels.
L. ]

T~

NEINERNS

In the three-octant case, each of the five viewing octants provides a
unique junction label, as shown in figure 12.12. Of course, one of the
viewing octants produces the view shown, which yields an Arrow. In one
of the other octants, the vertex looks like a Fork; in each of the other
three remaining octants, it looks like an L. Each of the L labels observed
is unique.

Figure 12.13 illustrates what five filled octants do. There are three
Jjunction labels, each of which is different from those seen before.

Finally, because cracks are forbidden, Ts can be labeled in only four
ways, all of which are consequences of partial occlusion. Thus, the total
number of ways to label a junction is now 18, as collected together in
figure 12.14.

Note that there are three junction labels in the Fork column that in-
clude boundary labels. All three could be considered rotated versions of
one another. Three distinct labels appear, to emphasize that there are
three distinct ways for a Fork to be labeled with boundary lines.

Now, all possible ways in which three-faced vertexes can be formed
have been enumerated, and you have viewed each such vertex from all
possible directions. You conclude that the 18 junction labels are all that
there can be. Any other label cannot correspond to a physically realizable
three-faced vertex.
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Figure 12.12 If three octants
are filled, the remaining five
viewing octants each supply a
junction label. There are three
unique Ls, one Fork, and one

Arrow.
.

Figure 12.13 If five octants
are filled, the three viewing
octants supply two Ls and one

Arrow.
L.

Finding Correct Labels Is Part of Line-Drawing Analysis

Now let us examine examples showing how the junction catalog can be used.
At first, assume that each object is suspended in space. Consequently, each
object’s background border has only boundary labels. Also note that there
is only one kind of Arrow junction in the junction catalog that has boundary
labels on its barbs. For any such Arrow, the shaft must be labeled with a
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Figure 12.14 Eighteen
junction configurations are
possible. Were it not for naturat

constraints, there would be 208.
. ]
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plus. Furthermore, there is only one kind of Fork with any plus label. For
any such Fork, all the lines are forced to be labeled with plus labels.

Now consider the cube shown in figure 12.15. Because you are to
imagine that the cube is suspended in space, the lines bordering on the
background certainly can be labeled with boundary labels. Next, each of
the Arrow’s shafts is forced to be labeled with a plus because the barbs
already have boundary labels. Now, only the central Fork remains to be
investigated. Because all the Fork junction’s lines already have plus labels
assigned through previous considerations, it remains only to check that a
Fork with three plus labels is in the junction catalog. It is.

Now consider the slightly harder example in figure 12.16, which is a
sort of two-tiered, double L-shaped figure. Again, it is useful to begin
by labeling the background border. Then, it is easy to move toward the
interior using the Arrows with boundary labels on their barbs, together
with the fact that a plus on any Fork line forces two more plus labels. To



260 Chapter 12 Symbolic Constraints and Propagation

Figure 12.15 Labeling begins
by placing boundary labels
pointing clockwise on the border
of the drawing. Next, it is
usually convenient to label the
shafts of the Arrow junctions
whose barbs lie on the border.
In this example, a consistent
labeling of all lines is possible,

of course.
L

move still further, you must return to the junction catalog to pick up the
other two Arrow junction labels. These other two Arrow junction labels
force all of the remaining junction labeling, as shown.

Starting from interior junctions is more difficult. Unlike border lines,
internal lines can get any label. In general, some ambiguity remains until
analysis reaches a border, at which time the ambiguity is usually resolved.

The border seems important to human analysis of drawings as well.
Consider the example shown in figure 12.17. By covering up the sides and
a little of the top, you can see either a series of ordinary steps or a row of saw
blades. This ambiguity may occur because the interior junctions, separated
by occlusion from the powerful border constraints, undergo reversals in
which concave, minus labels, switch with convex, plus labels.

Thus, symbolic constraint propagation offers a plausible explanation
for one kind of human information processing, as well as a good way for a
computer to analyze drawings. This idea suggests the following principle:

The principle of convergent intelligence:

> The world manifests constraints and regularities. If a
computer is to exhibit intelligence, it must exploit those
constraints and regularities, no matter of what the com-
puter happens to be made.

It is also interesting that the theory is useful not only in analyzing normal
drawings, but also in identifying illegal drawings— those that cannot cor-
respond to real objects. The drawing in figure 12.18 is illegal, a conclusion
you can reach through a labeling argument. Proceeding as before, back-
ground lines, Arrow junctions with plus-marked barbs, and Fork junctions
with plus labels can be exploited as shown. But now one Jjunction is ille-
gally labeled. The Arrow on the end of one arm insists on a minus label for
that arm, whereas the Fork on the other arm demands a plus label for that
arm. But because there is no L with one minus arm and one plus arm, the
drawing cannot be a view of a polyhedron with three-faced vertexes.
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Figure 12.16 Labeling of this
two-tiered figure begins with the
background border. Next the
shafts of the border Arrows
begin a propagation of plus
labels that continues through

all Forks encountered. The rest
of the job requires use of two
other Arrow junctions found in

the junction catalog.
L]
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Figure 12.17 The back-
ground border contributes con-
siderable constraint to line-
drawing analyses. If the border
of this object is covered up, the
disconnected central portion is
perceived in a variety of ways.

Figure 12.18 An impossible
object. The indicated junction is

not among the legal ones.
L .
<= Not possible

Waltz’s Procedure Propagates Label
Constraints through Junctions

Now you are ready to learn about Waltz’s procedure, a powerful pro-
cedure for propagating symbolic constraints. To see how Waltz's proce-
dure works, first consider the drawing-labeling problem abstractly, in fig-
ure 12.19, without getting into the details of the actual labels. Think of
keeping piles of label possibilities for each junction. These piles are created
when a junction is visited for the first time, and they are reexamined each
time an adjacent junction pile is altered.

In the illustration, junction A is the first junction visited, so you pile on
A all of the label possibilities allowed from the junction catalog, as shown
in the upper left of figure 12.19.

Now suppose junction B is the next junction visited. Again, you pile
on junction labels, but the total set is reduced immediately to those that
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(a)

(d)

Figure 12.19
Label propagation in
networks. At first, an
initial junction pile is
placed at an arbitrary
junction. Propagation
continues as long

as reduction occurs
at each junction pile

encountered.
L |

are compatible with at least one junction in the piles of all neighboring
junctions with piles. In figure 12.19, junction A’s label pile constrains
what can be in junction B’s pile.

Once a pile is created and has been reduced by neighboring piles, it is
time to see whether those same neighboring piles contain junction labels
that are incompatible with every junction label at the newly installed pile.
In figure 12.19, the reduced pile at junction B constrains what can be in
the pile at junction A.

Once set in motion, constraint propagation continues as long as the
junction piles encountered continue to be reduced. In figure 12.19, for
example, after the junction pile at junction C is installed and reduced,
the outward-moving part of the process starts, travels through the pile at
junction B, and terminates at the pile at junction A.

If there were no change at junction B, the propagation initiated at
Jjunction C would have terminated at junction B. On the other hand, if there
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Figure 12.20 An example
illustrating constraint propaga-
tion in drawings. Junction A is
visited first, followed by B, C, C
and D. The Arrows placed at

A limit the choices for Ls at B,
which in turn limit the choices
for Arrows at C. At C, automatic
neighbor reexamination has an
effect, eliminating all but one
label at B and A. Finally, the C
boundary label limits the Fork
choices at D to the one shown.
L]

already were label piles at all junctions in the illustration, a pile reduction
at junction C could initiate a propagation series that would travel all the
way around the loop, reduce the piles at each junction, and ultimately lead
to further reduction at junction C, the junction where the round-the-loop
propagation was initiated. Looping cannot continue forever, however.

Now let us move from the abstract to the concrete. Look at figure 12.20,
in which two Arrows, a Fork, and an L are buried in a drawing. Suppose,
further, that these four junctions are lifted out of the drawing and are
analyzed with the plus, minus, and boundary line labels.

If junction A is the first junction visited and none of its neighbors have
been visited, then the first step is to bring in all the possible Arrow junction
labels, piling them on junction A.
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Suppose junction B is the next junction investigated. There are six
junction labels for Ls in the junction catalog, but only two of these are
compatible with the possibilities known for the adjacent Arrow, junction
A. The other four are therefore rejected immediately.

After labels are placed at junction B, the next step is to investigate the
neighboring junctions that have been examined previously to see whether
any junction labels can be thrown out because of the new labels at junction
B. For this situation, nothing happens, because all three of the Arrow
junction labels at junction A are compatible with one of the two L labels
at junction B.

Moving on to junction C, the junction catalog supplies three entries as
before; for this Arrow, however, only one is compatible with the neighbors
already analyzed. The other two are rejected immediately.

The last time the neighbor of a newly visited junction was revisited,
nothing happened. This time, however, looking afresh at junction B reveals
that only one of the two remaining junction labels is compatible with the
adjacent Arrow, junction C. The list for junction B having been revised,
the adjacent Arrow, junction A, must be revisited as well. Of the three
original possibilities, only one survives.

Finally, looking at the Fork, junction D, the constraints from either
of its analyzed neighbors force all but one of the five Fork entries in the
junction catalog to be rejected.

Thus, the constraint is sufficient to interpret each line uniquely in this
group of four junctions, even though the group is lifted out of its surround-
ing context and is analyzed separately.

Of course, one way to implement Waltz’s procedure is to use demons
reminiscent of those in the arithmetic constraint nets introduced in Chap-
ter 11. To see how that would work, first consider the following specification
for a contraction net.

A contraction net is a representation
That is a frame system
In which

> Lexically and structurally, certain frame classes iden-
tify a finite list of application-specific interpreta-
tions.

> Procedurally, demon procedures enforce compatibil-
ity constraints among connected frames.

Starting with contraction nets, it is easy to specify a labeled draw-
ing. Here is one such specification—one that happens to be limited to the
original four line labels:
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Figure 12.21 without
shadows, there are several
ways to interpret a cube: It

may be suspended, it may be

supported by the floor, or it may

be attached to a wall.

/

A labeled drawing is a representation

That is a contraction net
In which

>

Lexically, there are line frames and junction frames. Lines
may be convex, concave, or boundary lines. Junctions
may be L, Fork, T, or Arrow junctions.

Structurally, junction frames are connected by line frames.
Also, each junction frame contains a list of interpretation
combinations for its connecting lines.

Semantically, line frames denote physical edges. Junction
frames denote physical vertexes.

Procedurally, demon procedures enforce the constraint
that each junction label must be compatible with at least
one of the junction labels at each of the neighboring junc-
tions.

Many Line and Junction Labels Are Needed to
Handle Shadows and Cracks

So far, by assumption, all the examples involve objects that are hanging
suspended in space. If a cube is resting on a table, however, the bottom
lines represent concave edges; they do not represent boundaries. If a cube
is stuck against a wall, as figure 12.21 shows, other lines represent concave
edges. Without an additional clue or assumption, several interpretations

are equally plausible.
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Figure 12.22 Shadows help
determine where an object rests

against others.
L ]

Note, however, that introducing shadows resolves the ambiguity. The
block in the middle of figure 12.22 definitely seems supported by a horizon-
tal surface, whereas the ones to the left and right, although less familiar,
seem attached vertically. Evidently, expanding labeling theory to include
labels for shadows should add further constraint and reduce ambiguity.

Take note that the shadow labels introduced in figure 12.22 indicate
a direction, just as boundary labels do: shadow labels are small arrows
placed so that they point into the shadowed region.

Now let us reconsider concave lines. Because concave lines are often
found where objects come together, the concave-label category can be split
into subcategories, indicating the number of objects involved and identi-
fying which object is in front. Suppose a concave edge represents a place
where two objects come together. Then, imagine pulling apart the two
objects slightly. The concave edge becomes a boundary edge with the label
pointing in one of two possible directions, as shown on the left and in the
middle of figure 12.23. The two possibilities are indicated by compound
symbols made up of the original minus label and the new boundary label.
If, by chance, there are three objects, again a compound symbol is used,
reflecting what is seen when the objects are pulled apart, as shown on the
right in figure 12.23.

Cracks lying between two objects can be treated analogously: Each
crack is labeled with a ¢, together with a boundary label that indicates
how the two objects involved fit together. With cracks between objects
allowed, you have the possibilities shown in figure 12.24. There are now 11
ways that any particular line may be labeled.

lllumination Increases Label Count and Tightens Constraint

The illumination on any face of an object can be classified, as shown in fig-
ure 12.25, as directly illuminated, shadowed by another ob ject, or shadowed
because it faces away from the light. The three possibilities are denoted by
I, for directly illuminated, S for shadowed by another object, and SS for
facing away from the light—that is, self-shadowed.

Line labels can carry knowledge about these illumination states in ad-
dition to information about edge type. If the illumination states and line
interpretations were to combine freely, there would be 32 = 9 illumination
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Figure 12.23 Concave
edges often occur where two
or three objects meet. It is
useful to distinguish among the
possibilities by combining the
minus label with the one or two
boundary labeis that are seen

when the objects are separated.
L ]

el f
= F

T

Figure 12.24 The eleven
line interpretations and the

corresponding labels.
L ]

Concave
edges
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Figure 12.25 lllumination
information often provides
useful constraint. If there

is a single light source, it is
convenient to recognize three
surface categories: illuminated:
shadowed by intervening
objects; and self-shadowed by
virtue of facing away from the

light source.
C ]

Iltuminated

llluminated

Iluminated

combinations for each of the 11 line interpretations, giving 99 total possi-
bilities. Only about 50 of these combinations, however, are possible. Some
combinations are forbidden because they would require an incredible coin-
cidence, like the projection of a shadow line exactly onto a concave edge.
Other combinations are excluded by definition; there cannot be, for exam-
ple, a combination in which both sides of a shadow line are illuminated.

Now, let us review. Initially, only basic lines were considered: boundary
lines, and interior concave and convex lines. Then, shadows were added.
Concave lines were split up to reflect the number of objects coming together
and the way those objects obscure one another. Cracks between objects
were introduced and handled analogously. Finally, line information was
combined with illumination information. Just over 50 line labels emerge
from this final expansion.

These changes make the number of physically realizable junctions large,
both for the original Fork, Arrow, L, and T types, and for other vertex
types allowed by relaxing the three-faced-vertexes and general position con-
straints. What is gained in return for this increased number?

First, consider how the set of physically realizable junction labels com-
pares to that of the unconstrained junction labels. The following table
gives the results for the original set of line labels:

Vertex Number Number Ratio

type of unconstrained of physically (%)
possible junctions realizable junctions

L 16 6 37.5

Fork 64 7.8

5
T 64 4 6.2
Arrow 64 3 4.7
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The percentages shown all indicate constraint, but they do not indicate
extraordinary constraint. When the line categories are expanded, however,
all numbers grow large and the constraint becomes incredible. The number
of junction labels in the expanded set, known as Waltz’s set, is large
absolutely, but the number is small compared with what it might be:

Vertex Approximate number Approximate number Ratio
type of unconstrained of physically (%)
possible junctions realizable junctions

L 2.5 x 108 80 3.2

Fork 1.2 x 10° 500 4.0 x 107!
T 1.2 x 105 500 4.0 x 107!
Arrow 1.2 x 10% 70 5.6 x 1072
Psi 6.2 x 10° 300 48x1073
K 6.2 x 10° 100 1.6 x 1073
X 6.2 x 108 100 1.6 x 1073
Multi 6.2 x 106 100 1.6 x 1073
Peak 6.2 x 108 10 1.6 x 1074
Kk 3.1 x 108 30 9.6 x 10°°

Figure 12.4 shows what all these junction types look like. For the Kk
Junction, only about one junction label in 10 million is physically realizable.
To be sure, the total number of labels has increased to a size too large to use
by hand, but still the constraints are so extreme that a computer program
using the large set can converge on an unambiguous solution.

In this progression from small set, large fraction to large set, small
fraction, you can observe the following powerful idea at work:

The describe-to-explain principle:

> The act of detailed description may turn probabilistic reg-
ularities into entirely deterministic constraints.

The Flow of Labels Can Be Dramatic

Watching a film is the best way to appreciate what can happen when
Waltz’s set, instead of the dwarfish set for the three-faced vertex world, is
used to label a drawing.

Lacking a film, glancing at the drawing in figure 12.26 and at the
trace in table 1 provides some feel for how the Waltz procedure works with
Waltz’s set. It would be tedious to follow the trace in detail, but some
overall points are obvious without much effort.

In each of the 80 steps, the step number is followed by a letter denoting
the junction involved. The letter is followed by the old number of junction
labels in the pile and the new number in the pile.
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Figure 12.26 A drawing
analyzed successfully by

Waltz’s labeling procedure.
L]

Table 1. A trace of Waltz's

labeling procedure in action.
L]
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Note that the border junctions are visited first. This order exploits
the extra constraint available at the border. Further inspection shows that
convergence is rapid. After only two or three visits, most of the junctions
have only one unique junction label associated with them. In step 74, for
example, junction S starts with 1391 possibilities. The number is reduced
to 5 by constraints coming in from one neighbor. Then, constraints from
another neighbor reduce the number to 1, leaving but a single interpreta-
tion.

The Computation Required Is Proportional to Drawing Size

Experiments using Waltz’s set show that the work required to analyze a
drawing grows in roughly linear proportion with the number of lines in the
drawing. To see why, informally, suppose that drawings can be split into
areas of more or less fixed size in terms of the lines and junctions contained
in each area. If the areas are such that constraint does not flow across
their frontiers, then the total time required to analyze a drawing is linearly
proportional to the number of areas, and hence is linearly proportional to
the number of junctions.

Flow-impeding frontiers exist because the T junctions, common at ob-
Ject boundaries, have little ability to transmit constraint: An obscuring
boundary can lie in front of any kind of edge.

PROPAGATION OF TIME-INTERVAL RELATIONS

In this section, you learn about another example of symbolic constraint
propagation; this one involves time intervals and the relations among time
intervals. The general idea is to use existing information about the rela-
tions among time intervals to reach conclusions about other relations. For
example, if interval A is before interval B, and interval B is before interval
C, then plainly interval A has to be before C.

Time relations are easier to understand visually, especially as they
become more complicated. As shown in the upper part of figure 12.27, time
intervals can be depicted as objects resting on a time line. Alternatively,
as shown in the lower part of figure 12.27, a pair of time intervals and the
relation that lies between them can be depicted as two nodes, and a labeled
link.

There Are 13 Ways to Label a Link between
Interval Nodes Yielding 169 Constraints

Assuming that no interval is allowed to start and stop at the same time,
then the interval before relation is just one of 13 possible relations between
two intervals, seven of which are shown in figure 12.28. The other six are
members of symmetric pairs. One such symmetric pair is the before pair,
because interval A may be before interval B or interval B may be before
interval A.
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Figure 12.27 Two time
intervals and the relation
between them. In the upper
part, two time intervals are
shown as objects resting

on a time line, with the

object representing interval A
preceding the one for interval B.
In the lower part, the two time
intervals are shown as nodes,
and the relation between them

is expressed as a link label.
L |
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before

Notationally, an arrow is drawn over each label to indicate the direction
in which a relation is to be read. Thus, A before B means interval A is

before interval B, whereas A before B means interval B is before interval
A. Attaching arrows to labels is necessary, rather than making the links
directional, because several labels, with arrows in opposite directions, may
be attached to one link.

Using this notation, figure 12.29 illustrates the idea that the labels on
each of a pair of links can constrain the labels on a third link. As shown,
three interval nodes are involved, one of which lies between the two links
in the link pair. The third link—the one constrained—spans the other two
interval nodes.

If two before labels point in the same direction, the constraint is severe,

allowing only a before label on the spanning relation. Curiously, however,

if the before labels both point toward the central interval, there is no con-
straint whatsoever, because all the 13 ways of labeling the spanning relation
remain possible.

Of course, there are 13 x 13 = 169 pairs of relations that can connect
interval A to interval B and interval B to interval C. The key idea is that
each such pair, joined at the central interval, interval B, has something
to say about which relations can possibly connect interval A directly to
interval C. Just what each pair has to say is something you can work out
on the back of an envelope or two, producing the table shown in figure 12.30.

All the constraints captured by the tables in figure 12.30 can be en-
forced, of course, by way of demon procedures in an interval net, which
is a special kind of contraction net:
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Figure 12.28 Seven of
the 13 possible relations
between two time intervals. The

remaining six relations reverse A
the meaning of the first six
relations shown here, allowing, B

for example, interval A to be
before interval B, or interval B
to be before interval A.

during

l
&

finishes

O
}
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is equal to
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Figure 12.29 in the top half,
interval A is before interval B,
and interval B is before interval
C. These relations force the
conclusion that interval A is
before interval C. On the other
hand, as shown in the bottom
half, nothing can be concluded
about the relation between
interval A and interval C given
only that interval A is before
interval B and interval C is

before interval B.
|

An interval net is a representation

That is a contraction net
In which

> Lexically and semantically there are interval frames de-
noting time intervals and link frames denoting time re-

lations, specifically before, before, during, during, overlaps,

overlaps, meets, meets, starts, starts, finishes, finishes, and
—_—_—

———
is equal to.

> Structurally, interval frames are connected by link frames.

> Procedurally, demon procedures enforce the constraint
that the interpretations allowed for a link frame between
two intervals must be consistent with the interpretations
allowed for the two link frames joining the two intervals
to a third interval.

Time Constraints Can Propagate across Long Distances

Given a chain of relations, it may be possible to use the table in figure 12.30
to reach a long-distance conclusion about the relation between two widely
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Figure 12.30 Half of the
table constraining the labels
between X and Z when the
labels between X and Y (the
rows) and between Y and Z
(the columns) are known. So
as to fit the table on two book-
sized pages, all labels are
abbreviated by their first letter.
x is a shorthand for o, s, d, and
f. Empty entries correspond to
no constraint; ali 13 labels are

possible.
L
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separated intervals. Figure 12.31 shows how. First, the pair of relations
connecting interval A, interval B, and interval C enable a conclusion about

which relations can connect interval A to interval C.
Next, the relation that connects interval A to interval C is used in

concert with the relation that connects interval C to D to determine which
relations can connect interval A to D. Continued iteration may eventually
provide some constraint on the relation between interval A and Z.
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A Complete Time Analysis Is Computationally Expensive

Now suppose you want to do a complete analysis, ensuring that you have
used whatever link labels are given to determine the absolute minimum
number of labels at every link in a net of n time intervals.

Because you are free to place a link between any two nodes, if there are
n nodes, there can be as many as n —1 links emerging from each. Avoiding
double counting by dividing by two, there must be 1‘—)(%2 links.

For each link between two nodes, there are n — 2 other nodes that can
serve as a central interval. Thus, there are n — 2 link pairs that can, in



278 Chapter 12 Symbolic Constraints and Propagation

Figure 12.31 A chain of

time-interval relations labeled betod oo oo ol
before enables the placement _ I
/ P - g - - - o
~ — - -

of other before labels, including

RN before l/)efore/ _before __ — before
the placement of a before label T T
between the ends of the chain. Pt
L] -

principle, force a reduction in the number of labels on a link. Each time
you cycle through all the links, you have to examine Mg—_ll x (n —2) link
pairs.

If no labels are eliminated during a cycle, you stop. But if any labels
are eliminated, you have to continue.

In the worst case, only one label of one link is eliminated during a

cycle. Because each of the %ﬁ links may have as many as 13 labels,
you may have to cycle through all the links, in the worst case, 13 x m;’;lz
times. Thus, the worst-case number of pair examinations is 13 x m;—_ll X
%ll X (n — 2), which is order n. This is not good if n is large.

Reference Nodes Can Save Time

Because a complete time analysis is computationally expensive, it may
be important to single out some of the time-interval nodes to serve as
reference nodes. When you want to determine the possible labels on a link
between two given interval nodes, you start by looking for paths between
the two nodes such that all links, except for the first and last, must connect
reference node pairs. Then you collect all the nodes in all such paths and
perform a complete analysis using those nodes.

Suppose, for example, that you single out interval nodes that represent
the morning and the afternoon. Further suppose that each is connected to
three other nodes as shown in figure 12.32.

Next, suppose you want to know the possible links between interval X,
attached to the morning node, and interval Y, attached to the afternoon
node. There is only one path between them through interval nodes, and
that path happens to contain four nodes. Accordingly, you need to do
a complete analysis of only a four-node, six-link net. Without reference
nodes, you would have to do a complete analysis of an eight-node, 28-link
net.

Of course, there is a price for confining your analysis to reference nodes:
you may overlook a constraint now and then. Generally, however, with
carefully selected reference intervals, little or nothing is lost.
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Figure 12.32 Reference
nodes can reduce dramatically Morning
the amount of computation
required to do constraint
propagation. As shown in the
upper part, only the nodes

on reference-node paths are
considered. As shown in the
lower part, an analysis involving
the four reference-path nodes
quickly indicates that interval X
is before interval Y.

Morning Afternoon

meets
<—
before during
before betore °

FIVE POINTS OF METHODOLOGY

History shows that many of the methods of artificial intelligence are like
sirens, seducing you into misapplication. Consequently, to keep yourself
focused on solving problems, rather than on showing off particular methods,
you should follow Marr’s methodological principles—those championed by
the late David Marr:

To follow Marr’s methodological principles:

> First, identify the problem.

> Then, select or develop an appropriate representation.
> Next, expose constraints or regularities.

> Only then, create particular procedures.

> Finally, verify via experiments.

You can easily imagine that the original developers of drawing-analysis
and interval-calculation procedures could have followed such methodologi-
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cal principles; in both cases, there is a clearly identified problem, a carefully
worked-out representation, and exposed constraints. Furthermore, in both
cases, there were implemented procedures that enabled convincing experi-
ments to be performed.

SUMMARY

In general terms, symbolic constraint boxes propagate information that
is used to reduce the sizes of collections of possible interpretations.

In line drawing analysis, for example, information propagating along
lines and through junctions leads to a steady reduction in the number
of interpretations possible for the connected junctions.

There are only four ways to label a line in the three-faced-vertex world:
as a convex line, a concave line, or a boundary line with two possible
orientations. The three-faced-vertex world permits only 18 ways of
arranging such line labels around a junction.

Waltz’s procedure propagates label constraints by eliminating all junc-
tion labels at each junction that fail to be compatible with at least one
junction labeling at each neighboring junction.

Many additional line and junction labels are needed to handle shadows
and cracks. Illumination also increases label count.

In the world of time intervals, there are 13 ways to label a link between
interval nodes, yielding 169 possible constraints on links that bridge
link pairs. These constraints can propagate time information across
long distances.

A complete time analysis is computationally expensive, but much of
the expense can be avoided if reference nodes are used, albeit with
some reduction in capability.

The world manifests many constraints and regularities. For a computer
to exhibit intelligence, it is necessary to exploit those constraints and
regularities no matter of what the computer happens to be made.
The act of detailed description may turn probabilistic regularities into
deterministic constraints.

Marr’s approach specifies five steps. First, you identify the problem.
Then, you select or develop an appropriate representation. Next, you
expose constraints or regularities. After that, you create particular
procedures. Finally, you verify via experiments.

BACKGROUND

Early ad hoc methods for line-drawing analysis, such as those developed
by Adolfo Guzman [1968], stimulated much of the subsequent work on
line-drawing analysis, including David Waltz’s seminal thesis on drawing
analysis, on which this chapter is largely based [Waltz 1972]. Waltz dealt
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not only with the labeling scheme explained here, but also with similar
schemes involving line and surface directions. David Huffman [1971] and
Maxwell Clowes {1971], working independently, devised labeling schemes
directly antecedent to Waltz’s. Their work was limited to the simplified
domain of three-faced vertexes with no shadows. Later work by Alan K.
Mackworth shows how constraints like Waltz’s can be derived automatically
[Mackworth 1973]. Subsequently, the work of Kokichi Sugihara has come
to be regarded as a tour de force [Sugihara 1978].

The idea of using constraint propagation to reason about time was
introduced in a seminal paper by James Allen [1983].

For an interesting use of symbolic constraint propagation in quite an-
other domain, see the work of Mark Stefik on a program that plans gene-
cloning experiments in molecular genetics [1980]. For a domain-independent
treatment of symbolic constraint propagation, see the work of Eugene C.
Freuder [1978, 1982].

The development of the PROLOG programming language can be viewed
as an effort to design a programming language around the idea of constraint
expression. PROLOG programmers try to express only knowledge, rather
than precise prescriptions of how knowledge is to be used. More often,
however, PROLOG is viewed as a programming language based on logic.
For an excellent introduction to PROLOG, see PROLOG Programming for
Artificial Intelligence, by Ivan Bratko [1986).





