
6.01, Spring Semester, 2008—Assignment 9, Issued: Tuesday, April 8 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.01—Introduction to EECS I
Spring Semester, 2008

Assignment 9, Issued: Tuesday, April 8

Overview of this week’s work

In software lab

• Start working through the software lab. It is likely that you will have to finish it as homework.

Before the start of your design lab on Apr 10 or 11

• Read the class notes and review the lecture handout.
• Do the on-line tutor problems in section 8.1.
• Read the entire description of the design lab, so that you will be ready to work on it when you

get to lab.
• Bring in to design lab, on paper, a solution to question 9. You may do this individually, or with

your partner. You should staple this solution to your lab check-off sheet.

In design lab

• Do the nano-quiz.
• Work through the design lab.

At the beginning of your next software lab on Apr 15 or 16

• Submit written solutions to questions 2, 3, 4, 7, and 8 from the software lab and problems to
be determined from the design lab. All written work must conform to the homework guidelines
on the web page.

6.01, Spring Semester, 2008—Assignment 9, Issued: Tuesday, April 8 2

Software Lab

You will need to have installed numpy for this lab. Instructions are in the 6.01 Software
pages. Or use a lab laptop.

In this software lab you will delve into the implementation of the circuit solver that you used last
week. In the process, you’ll get more insight into a systematic approach to solving circuits as well
as into the voltage-controlled voltage-source model of op-amps.

Circuit Constraints

The circuit solver that you used last week took pains to keep all the details of how it operates
out of sight. You were able to use it effectively without understanding how it managed to get the
solutions for the circuits. This is another instance of the power of abstraction at work. We basically
created a new “language” for circuits, just like Python is a language for computation and system
functions are a language for signal processing. Now we will look in more detail on how the circuit
solver can be implemented.

The solver you used last week is built around the idea of a constraint – an arbitrary function of
variables that is supposed to evaluate to zero for the “desired” values of the variables. Given a list
of constraints, the solver used Newton’s method to find values of the variables that “satisfy” (make
zero) all the constraints. This is a very general approach but a bit more complicated than we have
time to understand this week.

We’ll look at a simpler version of the solver that is limited to dealing with constraints that can
be formulated as linear equations. Fortunately, this includes resistors, regular voltage sources,
and the model of the op-amp as a voltage-controlled voltage-source (without the limitation on the
output voltage due to source voltages). This simplified version should help you see what’s going
on, without the complication of finding numerical solutions for non-linear equations.

In the lab9 directory, you will find solveLinearConstraints.pyc, which contains programs for
creating lists of constraints and their associated variables, and then once the list of constraints
and variables has been generated, determining values for the variables so that the constraints are
satisfied. In particular, a user must first create an instance of the class ConstraintSet. Then
the user invokes ConstraintSet’s method addConstraint multiple times, once for each of the
constraints. The method addConstraint appends a constraint and the constraint’s associated
variables to the instance. By calling ConstraintSet’s method solve, values are determined for
the variables so that the constraints are satisfied. The values of the variables can be printed by
calling ConstraintSet’s method display.

The function addConstraint has one argument, which is a linear equation specified by a set of
pairs, each of which consists of a coefficient and a variable name. The constant term in the linear
equation is specified in the same way, with the variable name being None. We will have a number
of standard procedures for generating constraints, one for each type of constraint that we want to
have in circuits. But, remember that this approach is simply using linear equations to model the
circuits and it can be used for any problem where the solution can be represented as the solution
to a set of simultaneous linear equations.

As an example, consider the problem of finding values for x and y that satisfy the two constraints

5 ∗ x − 2 ∗ y = 3

6.01, Spring Semester, 2008—Assignment 9, Issued: Tuesday, April 8 3

and
3 ∗ x + 4 ∗ y = 33.

Of course, x = 3 and y = 6 satisfy the above two constraints.

To use the ConstraintSet class and its method solve to find the constraint-satisfying values of x

and y, we first create an instance of ConstraintSet and add the two constraints

linSys = ConstraintSet()
linSys.addConstraint([(5.0, ’x’), (-2.0, ’y’), (3.0, None)])
linSys.addConstraint([(3.0, ’x’), (4.0, ’y’), (33.0, None)])

Note that we’re representing the linear equation constraints as lists of tuples of coefficients (which
must be numbers) and variable names (which must be strings), except that the constant term has
None for a variable name. There must be exactly one constant term, and it must be only term on
the right hand side of the equation.

Finally, we call solve and display the solution:

solution = linSys.solve()
linSys.display(solution)

In order to use this approach for circuit problems, we need an organized approach for generat-
ing the variables and constraints for a circuit. The course notes present the nodal approach for
accomplishing this task. The steps in the nodal approach are

1. Label all the circuit node voltages and element currents (noting direction), and select a
reference (ground) node.

2. For each element, write constitutive equations that relate element currents to the voltages at
the element’s terminals.

3. For each circuit node, except the reference (ground) node, write a conservation law. That is,
insist that the sum of currents entering a node should be equal to the sum of currents leaving
a node.

In order to use the constraint solver to solve circuit problems, it is helpful to have functions that
return constraints associated with a circuit’s constitutive equations and conservation laws. In the
file linearCircuitConstraints.py, there are functions that implement circuit related constraints.
The resistor and vsrc functions implement the constitutive relations associated with a resistor
and a voltage source.

In the case that we have an R-ohm resistor between nodes n1 and n2, and we let i1,2 be the current
flowing from n1 to n2, then the following constraint has to hold between those variables:

vn1
− vn2

− Ri1,2 = 0 .

If we have a V-volt voltage source between nodes n1 and n2, and we let i1,2 be current flowing from
n1 to n2, then the following constraint has to hold between those variables:

vn1
− vn2

= V .

6.01, Spring Semester, 2008—Assignment 9, Issued: Tuesday, April 8 4

n1

n4 n3

n2

iA

iD

iB

RA

+

-
VCRB

RD

iC

Figure 1: Circuit with three resistors and a voltage source.

Note that V is a constant, not a variable.

Here is an example circuit specification, corresponding to the first example in the lecture notes
(reproduced here in figure 1). You can find it in example.py.

We start by specifying values for the resistors and the voltage source. Naming them here makes
them easy to play with.

ra = 100 # 100 ohms

rb = 200 # 200 ohms

rd = 100 # 100 ohms

vc = 10 # 10 volts

Next, we make an instance of the ConstraintSet class:

ckt = ConstraintSet ()

Now, for each component in the circuit, we specify a constraint relating the voltages on its terminals
and the current flowing through it. We have to start, as usual, by thinking up names for each of
the node voltages and the currents through the components; those will be the variables in our
constraint system.

ckt.addConstraint(resistor(ra , [’n1’, ’n2’, ’ia’]))
ckt.addConstraint(resistor(rb , [’n2’, ’n1’, ’ib’]))
ckt.addConstraint(resistor(rd , [’n2’, ’n3’, ’id’]))
ckt.addConstraint(vsrc(vc , [’n2’, ’n3’, ’ic’]))

In the first line, we are saying that there is an ra-ohm resistor between nodes n1 and n2, with an
ia-amp current flowing through it, from node n1 to node n2. It is important to label the directions
of the currents in your diagram and be sure you use them consistently. Study this example and be
sure you understand how it corresponds to the circuit. (Remember that in the figure n2 and n4

are really the same node (they’re just connected by a wire, and so have the same voltage); so we’re
just using the name n2 for both of them here.)

What, exactly, does resistor(ra, [’n1’, ’n2’, ’ia’]) mean? If you look in the file
linearCircuitConstraints.py, you’ll see a definition of the function:

6.01, Spring Semester, 2008—Assignment 9, Issued: Tuesday, April 8 5

def resistor(R, x): # R is resistance

[vn1 , vn2 , i12] = x
return [(1.0, vn1), (-1.0, vn2), (-float(R), i12), (0, None)]

So, resistor is a simple function that returns a linear equation. It consumes a resistance, R, and
a list of node names (which will be set to the internal variable names [vn1, vn2, i12]), and
returns vn1 - vn2 - R * i12 = 0. The float in -float(R) is just there to avoid any problems
with Python integer arithmetic.

Now, it’s time for the KCL constraints. The kcl function in linearCircuitConstraints.py
implements the constraint that the signed sum of currents at a node must equal zero, and the
setGround implements a constraint forcing a value to zero (typically used to force the reference
(ground) node voltage to be zero).

ckt.addConstraint(kcl([-1, 1], [’ia’, ’ib’])) # n1

ckt.addConstraint(kcl([1,-1,-1, -1], [’ia’, ’ib’, ’ic’, ’id’])) # n2

ckt.addConstraint(setGround(’n3’))

Remember that a KCL constraint asserts that a bunch of currents sum to zero; so to make a new
KCL constraint, you call the function kcl with a list of signs, expressed as 1 or -1. You should
use a +1 value for currents flowing into the node and a -1 value for currents flowing out. You also
specify a list of variables, in this case, representing the currents flowing into or out of this node,
that should satisfy the constraint.

The constraint solver can take a set of n linear equations over n variables and return values for
the variables that satisfy all the equations. It does this by calling an equation solver provided in
numpy.

Finally, we ask the circuit solver to get a solution. A solution is an array (this is a special data type
defined by numpy, which is different from a list) of values for each of the variables in the constraint
system. And then we display it nicely (using the names from the constraint definitions).

>>> solution = ckt.solve()
>>> ckt.display(solution)
ia = -0.0
ib = 0.0
ic = -0.1
id = 0.1
n1 = 10.0
n2 = 10.0
n3 = 0.0

Question 1: Modify example.py so to remove the wire connecting nodes n2 and n4. Update
all the constraints and solve. Which constraints needed to be changed to make this change?
Was it easier or harder than removing the wire in the high-level representation from the
software lab from week 8?

The abstract model we used for the op-amp was a voltage-controlled voltage source model, and
using that model in the inverting amplifier yields the schematic we saw last week (repeated in
figure 2)

where the gain of the voltage-controlled voltage source, K, is a very large number. You should add
this voltage-controlled voltage source model to the constraint solver, allowing K to be a parameter

6.01, Spring Semester, 2008—Assignment 9, Issued: Tuesday, April 8 6

+

_

+

_

Opamp Model

+

_

iout

Figure 2: Op Amp model: the voltage-controlled voltage source.

Figure 3: Assume V1 and V2 are connected to voltage sources.

like resistance is for resistors. Keep in mind that this model has four terminals, but there is only
one nonzero current, iout. Therefore, your constraint should involve four voltages and one current.

6.01, Spring Semester, 2008—Assignment 9, Issued: Tuesday, April 8 7

Question 2: Implement a constraint function for the voltage-controlled voltage-source model of
an op-amp. A skeleton for this function can be found in linearCircuitConstraints.py.

Question 3: Note that the output current iout is not used in the op-amp constitutive relations
(the same situation occurs with a voltage source). A variable can’t exist in our system
of equations without any constraints. What constraint will ultimately involve the op-amp
current? (Note also that we have said that no current flows into the op-amp through the
v+ and v- nodes. We don’t have to write equations to enforce those constraints; we simply
don’t introduce those current variables in our model.)

Question 4: Write the constraints for the circuit in figure 3. Pick values of the resistors that
give you V0 = 2V1 − 3V2. Verify that your solution gives you the expected answer. Be sure
you test with values of V1 and V2 that demonstrate correctness.

Solving the constraints

Now we need to solve the constraints. That is, we need to find values for the voltages and currents
in the circuit that satisfy all of the constraints (linear equations). So, we need to solve a set of
simultaneous linear equations.

In general, you will have a set of k linear equations in k unknowns:

a0,0x0 + a0,1x1 + . . . + a0,kxk = c0

. . . = . . .

ak,0x0 + ak,1x1 + . . . + ak,kxk = ck

In numpy, there’s a handy function to solve sets of linear equations :

from numpy import *
x = linalg.solve(A,c)

where A is a matrix, each of row of which are the coefficients of the linear equations (not including
the constant terms) and c is a vector of the constant terms.

In numpy, we can build an array and initialize it by giving it a list. To create a vector with 3
elements, do:

c = array ([0.0 , 1.0, 2.0])

You can access the elements of this vector as you would a list: c[1], which evaluates to 1.0. To
make a matrix with 2 rows and 3 columns, do:

A = array ([[1.0 , 2.0, 3.0], [4.0, 5.0, 6.0]])

You can access the elements of the array by: A[row][column] or by A[row,column], so A[1][2]
and A[1,2] both evaluate to 6.0. You can change the value of that array element by assignment,
such as A[1,2] = 6.5.

6.01, Spring Semester, 2008—Assignment 9, Issued: Tuesday, April 8 8

Question 5: Create an array A and a vector b that correspond to the two linear equations in
the linsys example involving two linear equations. Use linalg.solve to find the solution
and check it’s as expected.

Question 6: Create an array A and a vector b that correspond to the constraints in the
circuit.py file. Start by writing out all of your constraint equations on paper, with ev-
ery variable in every equation, even if it has a 0 coefficient, and in the same order in each
equation. (This is just to see how to set up this type of problem; just type Python expres-
sions along the lines of A = array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), we’ll write a
general program later.)

Use linalg.solve to find the solution and check it’s as expected.

Our strategy for solving circuits will be to scan all the coefficients of the equations from all the
circuit constraints and build the matrix A and the vector c and call linalg.solve. Note that
we will have to pick an index to correspond to each variable, for example, variable 0 could be ia,
variable 1 could be n1, variable 2 will be n2 and so on. A dictionary will serve to keep track of this
mapping.

Question 7: We have given you the file solveLinearConstraintsShell.py which has a par-
tially written class definition for the ConstraintSet class. Read all of the code in that file
carefully. Then fill in the indicated sections of the class, in the addConstraint and solve
methods.

Question 8: Test your class definition using at least two of the examples you did earlier, includ-
ing the subtraction op-amp circuit. You will need to change the import statements at the
top of the circuit files so that they import solveLinearConstraintsShell.py.

Homework due In Design Lab

Question 9: Design and draw the circuit diagram for an op amp circuit to compute v1 − v2,
where v1 and v2 are the voltages coming out of the two potentiometers (refer to revised
design lab 8 handout for details).

6.01, Spring Semester, 2008—Assignment 9, Issued: Tuesday, April 8 9

Exploration: More abstract circuit specifications

Solving a circuit this way is a lot easier than using a pencil and paper, but it’s still kind of a pain
to specify the circuit. We find that we often make mistakes with the signs on the KCL constraints.
The fact is that, once we know what the components in the circuit are, and how they’re connected
together, the entire circuit is specified. In the language we used for last week’s lab, we could do
the same job as above with a simpler specification:

c = Circuit ([Resistor(ra, ’n1’, ’n2’),
Resistor(rb, ’n4’, ’n1’),
Resistor(rd, ’n4’, ’n3’),
Wire(’n4’, ’n2’),
VSrc(vc, ’n2’, ’n3’)])

c.solve(’n3’)

We still have to name the nodes, but not the currents. Then, for each component, we just specify
its value and its terminals. The order of the terminals still has to agree with the order of the
variables in the underlying constraint function.

Use the code from this week’s lab to implement a system similar to the one we used last week.
Your solution should:

• Provide a convenient way to specify circuits (just saying what the components are and how
they are connected together);

• Implement resistors, voltage sources, and op-amps;

• Make it relatively easy to add new components with linear constraints; and

• Display solutions nicely.

Exploration 1: Hand in your code and demonstrate it on the example in figure 3.

Exploration 2: Explain what someone would have to do to add a new type of component.

