6.01: Introduction to EECS I

Lecture 9
Modeling Dynamics

April 8, 2008

Freshman Open House

Friday, April 11, 2008 - 3:30 to 5:00 PM - Room 34-401
For Freshmen: Free \mathbf{T}-shirts (while supplies last) Department Memorabilia Handouts
LOTS of Food
Here's what will be going on:
Welcome to EECS, Prof. Eric Grimson, Department Head Short Research Presentations by Faculty:
Prof. Robert C. Miller, "Lightweight Publishing, Automation, and Customization for the Web"
Prof. Vladimir Bulovic, "Lighting Up the World with Quantum Dots"
Prof. Polina Golland, " Understanding Activity Patterns in the Brain"

ALL Freshmen invited, especially potential majors in VI!

Analyzing Circuits as Constraints: One Ports

Systems of one-port elements can be analyzed by combining three types of constraints:

- KCL
- KVL
- component relations for each one-port
- resistor: $V=I R$
- voltage source: $V=V_{s}$
- current source: $I=I_{s}$

Analyzing Circuits as Constraints: One Ports

The "node" method is one (of many) ways to systematically choose equations and unknowns.

- label all nodes except one (gnd)
- write KCL for each node whose voltage is not known
- solve

KCL at node 2: $\frac{V_{2}-12}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{2}-V_{3}}{R_{3}}=0$
KCL at node 3: $\frac{V_{3}-V_{2}}{R_{3}}+\frac{V_{3}}{R_{4}}=0$
Two equations; two unknowns: V_{2} and V_{3}.

Analyzing Circuits as Constraints: Two Ports

Two-port elements can be represented by two constraints.
Example: op amp

- port 1: $I_{1}=0$
- port 2: $V_{2}=K\left(V_{+}-V_{-}\right)$

Notice that $I_{1}=0$ constraint can be explicit (as it is above) or implicit, as is done in our software circuit solver (where there is no I_{1} variable).

Analyzing Op Amp Circuits

Solving op amp constraints.
Example: non-inverting buffer

$V_{o}=K\left(V_{+}-V_{-}\right)=K\left(V_{i}-V_{o}\right)$
$(K+1) V_{o}=K V_{i}$
$\frac{V_{o}}{V_{i}}=\frac{K}{K+1}$

"Thinking" like an op amp
What would the op amp do if the input voltage changed suddenly from 0 V to 1 V ? Assume $K=2$.

"Thinking" like an op amp

This reasoning is wrong because it ignores a critical property of circuits.

For a voltage to change, charged particles must flow.
To understand flow, we need to understand continuity.

Flows and Continuity

If a quantity is conserved, then the difference between what comes in and what goes out must accumulate.

Assume water is conserved: $\quad \frac{d h(t)}{d t} \propto r_{i}(t)-r_{o}(t)$
What determines the leak rate r_{o} ?

Check Yourself

The holes in each of the following tanks have equal size. Which tank has the largest leak rate r_{0} ?

1.

3.

4.

Flows and Continuity
If a quantity is conserved, then the difference between what comes in and what goes out must accumulate.

Assume water is conserved: $\quad \frac{d h(t)}{d t} \propto r_{i}(t)-r_{o}(t)$
Assume linear leaking: $\quad r_{0}(t) \propto h(t)$

Solve:
$\frac{d r_{o}(t)}{d t} \propto r_{i}(t)-r_{o}(t)$

Check Yourself

$$
\frac{d r_{o}(t)}{d t} \propto r_{i}(t)-r_{o}(t)
$$

What are the dimensions of the missing constant of proportionality?

Analysis of the Leaky Tank

Call the constant of proportionality $1 / \tau$. Then τ is called the time constant of the system.

$$
\frac{d r_{o}(t)}{d t}=\frac{r_{i}(t)}{\tau}-\frac{r_{o}(t)}{\tau}
$$

Analysis of the Leaky Tank

Call the constant of proportionality $1 / \tau$. Then τ is called the time constant of the system.

$$
\frac{d r_{0}(t)}{d t}=\frac{r_{i}(t)}{\tau}-\frac{r_{o}(t)}{\tau}
$$

Solve:
Make a discrete time approximation. Assume $r[n]=r(n T)$:

$$
\frac{r_{o}[n+1]-r_{o}[n]}{T}=\frac{r_{i}[n]}{\tau}-\frac{r_{0}[n]}{\tau}
$$

Then

$$
r_{o}[n+1]=\left(1-\frac{T}{\tau}\right) r_{o}[n]+\frac{T}{\tau} r_{i}[n] .
$$

Analysis of the Leaky Tank

Determine $r_{o}(t)$ for $t>0$ assuming that the tank is initially empty and that $r_{1}(t)$ goes from 0 to 1 at $t=0$. Let $\tau=1$ second.

$$
r_{o}[n+1]=\left(1-\frac{T}{\tau}\right) r_{0}[n]+\frac{T}{\tau} r_{i}[n] .
$$

Try different stepsizes T. Solutions for different values of T converge when T is small compared to the time constant τ.

Check Yourself

Check Yourself

Which of the following tanks has the largest time constant τ ?

1.

3.

2.
4.

Water accumulates in a leaky tank.

Charge accumulates in a capacitor.

$$
\frac{d v}{d t}=\frac{i_{i}-i_{0}}{C} \propto i_{i}-i_{0} \quad \text { analogous to } \quad \frac{d h}{d t} \propto r_{i}-r_{0}
$$

Charge Accumulation in an Op Amp

We can add a resistor and capacitor to "model" the accumulation of charge in an op amp.

R and C are NOT inside an op amp.

Op Amp Model

Here is a more accurate circuit model of a $\mu \mathrm{A} 709$ op amp.

Op Amp

This artwork shows the physical structure of a $\mu \mathrm{A} 709 \mathrm{op}$ amp

Charge Accumulation in an Op Amp

We can add a resistor and capacitor to "model" the accumulation of charge in an op amp.

R and C are NOT inside an op amp.
They are parts of our circuit model of an op amp.
This is an example of using the electical circuit language itself as a modeling language.

Dynamic Analysis of Op Amp

If $V_{i}>V_{o}$ then the dependent voltage source adds charge to the capacitor and V_{o} rises.

If $V_{i}<V_{o}$ then the dependent voltage source removes charge to the capacitor and V_{o} falls.

Dynamic Analysis of Op Amp

Switching the plus and minus input leads flips these relations. Now if $V_{o}>V_{i}$ the dependent voltage source adds charge to the capacitor and V_{o} rises.

Such systems are said to have "positive feedback."
Positive feedback tends to make systems unstable.

Dynamic Analysis of Op Amp

We can analyze the stability of a circuit by making a block diagram model.

First model the $R C$ circuit. Let $V_{2}=K\left(V_{+}-V_{-}\right)$. Then the capacitor current I_{C} is given by

$$
I_{C}=\frac{V_{2}[n]-V_{0}[n]}{R}=C \frac{d V_{o}}{d t} \approx C \frac{V_{o}[n+1]-V_{o}[n]}{T}
$$

which can be solved for $V_{o}[n+1]$:

$$
V_{o}[n+1]=\left(1-\frac{T}{\tau}\right) V_{o}[n]+\frac{T}{\tau} V_{2}[n] \quad \text { where } \quad \tau=R C
$$

Dynamic Analysis of Op Amp

Represent the entire circuit with a block diagram.

$V_{o}[n+1]=\left(1-\frac{T}{\tau}\right) V_{o}[n]+\frac{T}{\tau} V_{2}[n]$

Check Yourself

Dynamic Analysis of Op Amp

The gain K affects the speed of the system response.
Simulated responses for an op amp with $\tau=25 \mathrm{~ms}$ (typical for op amps we use in lab).

Increasing K makes the response of the system faster.

Check Yourself

Dynamic Analysis of Op Amp

Increasing K makes the system respond more quickly.

This is one of the most important uses of feedback in electronics.

Designers know how to build devices with lots of gain.
Building devices that are fast is not as easy.
Trade gain for speed: use feedback to make circuits faster.

Summary

Today we learned how to think about dynamics of a system.

"Thinking" like an op amp

We should not think about an op amp as sequentially computing its response.

Analyzing Op Amp Circuits

Furthermore, op amps can be thought of as instantaneous constraint solvers if and only if the feedback is negative.

Leaky Tanks and Capacitors

Physically, an op amp operates as a pump that moves charge and thus changes the output voltage.
Water accumulates in a leaky tank and changes height.

Charge accumulates in a capacitor and changes voltage.

Summary

Today we learned how to think about dynamics of a system.

We analyzed a model for the dynamics of an op amp and found a relation between gain and speed that is fundamental to the use of feedback.

