
6.01: Introduction to EECS I

Lecture 9

Modeling Dynamics

April 8, 2008
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Freshman Open House

Friday, April 11, 2008 – 3:30 to 5:00 PM – Room 34-401

For Freshmen: Free T-shirts (while supplies last)

Department Memorabilia

Handouts

LOTS of Food

Here’s what will be going on:
Welcome to EECS, Prof. Eric Grimson, Department Head
Short Research Presentations by Faculty:
Prof. Robert C. Miller, ”Lightweight Publishing, Automation,
and Customization for the Web”
Prof. Vladimir Bulovic, ”Lighting Up the World with Quan-
tum Dots”
Prof. Polina Golland, ”Understanding Activity Patterns in the
Brain”

ALL Freshmen invited, especially potential majors in VI!
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Analyzing Circuits as Constraints: One Ports

Systems of one-port elements can be analyzed by combining
three types of constraints:

• KCL

• KVL

• component relations for each one-port

− resistor: V = IR
− voltage source: V = Vs

− current source: I = Is

+
−

12
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Analyzing Circuits as Constraints: One Ports

The “node” method is one (of many) ways to systematically
choose equations and unknowns.

• label all nodes except one (gnd)

• write KCL for each node whose voltage is not known

• solve

+
−

12

V1=12 V2 V3

gnd

R1 R3

R2 R4

KCL at node 2:
V2 − 12

R1
+

V2
R2
+

V2 − V3
R3

= 0

KCL at node 3:
V3 − V2

R3
+

V3
R4
= 0

Two equations; two unknowns: V2 and V3. 4

Analyzing Circuits as Constraints: Two Ports

Two-port elements can be represented by two constraints.

Example: op amp

• port 1: I1 = 0

• port 2: V2 = K(V+ − V−)

V++

− V−

V1

I1

+
−

K(V+−V−)

+

−

V2

I2

Notice that I1 = 0 constraint can be explicit (as it is above) or
implicit, as is done in our software circuit solver (where there
is no I1 variable).
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Analyzing Op Amp Circuits

Solving op amp constraints.

Example: non-inverting buffer

+
−

Vi

V+

V−

Vo

+
−

K(V+−V−)

Vo = K(V+ − V−) = K(Vi − Vo)

(K + 1)Vo = KVi

Vo
Vi
=

K
K + 1
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Check Yourself

+
−

Vi

V+

V−

Vo

+
−

K(V+−V−)

Which of the following equations describes
Vo
Vi

?

1.
K

K + 1
2.

K
K − 1

3.
−K

K + 1

4.
−K

K − 1
5. none of the above

7

“Thinking” like an op amp

What would the op amp do if the input voltage changed sud-
denly from 0 V to 1 V? Assume K = 2.

+
−

Vi

V+

V−

Vo

+
−

K(V+−V−)

time

Vo

1

−10

= 22

This cannot be right!
We used this circuit in lab.
What is wrong with this reasoning? 8

“Thinking” like an op amp

This reasoning is wrong because it ignores a critical property
of circuits.

For a voltage to change, charged particles must flow.

To understand flow, we need to understand continuity.
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Flows and Continuity

If a quantity is conserved, then the difference between what
comes in and what goes out must accumulate.

ri (t)

ro (t)
h(t)

Assume water is conserved:
dh(t)

dt
∝ ri(t) − ro(t)

What determines the leak rate ro?
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Check Yourself

The holes in each of the following tanks have equal

size. Which tank has the largest leak rate ro?

3. 4.

1.
2.
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Flows and Continuity

If a quantity is conserved, then the difference between what
comes in and what goes out must accumulate.

ri (t)

ro (t)
h(t)

Assume water is conserved:
dh(t)

dt
∝ ri(t) − ro(t)

Assume linear leaking: ro(t) ∝ h(t)

Solve:
dro(t)

dt
∝ ri(t) − ro(t)
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Check Yourself

dro(t)
dt
∝ ri(t) − ro(t)

What are the dimensions of the missing constant of

proportionality?
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Analysis of the Leaky Tank

Call the constant of proportionality 1/τ. Then τ is called the
time constant of the system.

dro(t)
dt
=

ri(t)
τ
−

ro(t)
τ
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Analysis of the Leaky Tank

Call the constant of proportionality 1/τ. Then τ is called the
time constant of the system.

dro(t)
dt
=

ri(t)
τ
−

ro(t)
τ

Solve:

Make a discrete time approximation. Assume r[n] = r(nT):

ro[n + 1] − ro[n]
T

=
ri[n]
τ
−

ro[n]
τ

Then

ro[n + 1] =
(
1 −

T
τ

)
ro[n] +

T
τ

ri[n].
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Analysis of the Leaky Tank

Determine ro(t) for t > 0 assuming that the tank is initially
empty and that r1(t) goes from 0 to 1 at t = 0. Let τ = 1 second.

ro[n + 1] =
(
1 −

T
τ

)
ro[n] +

T
τ

ri[n].

Try different stepsizes T. Solutions for different values of T
converge when T is small compared to the time constant τ.

time (seconds)

ro(t)

1 2 3

T = 1
T = 0.5
T = 0.25
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Check Yourself

Provide a physical explanation of the shape of this

response.

time (seconds)

ro(t)

1 2 3

T = 1
T = 0.5
T = 0.25
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Check Yourself

Which of the following tanks has the largest time

constant τ?

3. 4.

1.
2.
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Leaky Tanks and Capacitors

Water accumulates in a leaky tank.

ri (t)

ro (t)
h(t)

Charge accumulates in a capacitor.

C v
+

−

ii io

dv
dt
=

ii − io
C
∝ ii − io analogous to

dh
dt
∝ ri − ro
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Charge Accumulation in an Op Amp

We can add a resistor and capacitor to “model” the accumu-
lation of charge in an op amp.

+
−

Vi

V+

V−

R
C

Vo

+
−

K(V+−V−)

R and C are NOT inside an op amp.

20

Op Amp Model

Here is a more accurate circuit model of a µA709 op amp.
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Op Amp

This artwork shows the physical structure of a µA709 op amp.
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Charge Accumulation in an Op Amp

We can add a resistor and capacitor to “model” the accumu-
lation of charge in an op amp.

+
−

Vi

V+

V−

R
C

Vo

+
−

K(V+−V−)

R and C are NOT inside an op amp.

They are parts of our circuit model of an op amp.

This is an example of using the electical circuit language itself
as a modeling language.
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Dynamic Analysis of Op Amp

If Vi > Vo then the dependent voltage source adds charge to
the capacitor and Vo rises.

+
−

Vi

V+

V−

R
C

Vo

+
−

K(V+−V−)

If Vi < Vo then the dependent voltage source removes charge
to the capacitor and Vo falls.

+
−

Vi

V+

V−

R
C

Vo

+
−

K(V+−V−)
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Dynamic Analysis of Op Amp

Switching the plus and minus input leads flips these relations.
Now if Vo > Vi the dependent voltage source adds charge to
the capacitor and Vo rises.

+
−

Vi

V+

V−

R
C

Vo

+
−

K(V+−V−)

Such systems are said to have “positive feedback.”

Positive feedback tends to make systems unstable.
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Dynamic Analysis of Op Amp

We can analyze the stability of a circuit by making a block
diagram model.

+
−

Vi

V+

V−

R
C

Vo

+
−

K(V+−V−)

First model the RC circuit. Let V2 = K(V+ − V−). Then the
capacitor current IC is given by

IC =
V2[n] − V0[n]

R
= C

dVo
dt
≈ C

Vo[n + 1] − Vo[n]
T

which can be solved for Vo[n + 1]:

Vo[n + 1] =
(
1 −

T
τ

)
Vo[n] +

T
τ

V2[n] where τ = RC
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Dynamic Analysis of Op Amp

Represent the entire circuit with a block diagram.

+
−

Vi

V+

V−

R
C

Vo

+
−

K(V+−V−)

Vo[n + 1] =
(
1 −

T
τ

)
Vo[n] +

T
τ

V2[n]

K+

−1

+ R
T
τ

1−
T
τ

Vi Vo
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Check Yourself

+ R
T
τ

1−
T
τ

K+

−1

Vi Vo

This system has a pole at

1. 1 +
T
τ

2. 1 −
T(K − 1)
τ

3. 1 −
T(K + 1)
τ

4. 1 −
T
τ

5. none of above
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Dynamic Analysis of Op Amp

The gain K affects the speed of the system response.

Simulated responses for an op amp with τ = 25 ms (typical for
op amps we use in lab).

0 5 10
time (ms)

Vo

K = 1

K = 10
K = 100K = 1000

Increasing K makes the response of the system faster.
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Check Yourself

+
−

Vi

V+

V−

R
C

Vo

+
−

K(V+−V−)

Why does increasing the gain K make the response

of the system faster?
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Dynamic Analysis of Op Amp

Increasing K makes the system respond more quickly.

0 5 10
time (ms)

Vo

K = 1

K = 10
K = 100K = 1000

This is one of the most important uses of feedback in elec-
tronics.

Designers know how to build devices with lots of gain.

Building devices that are fast is not as easy.

Trade gain for speed: use feedback to make circuits faster.
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Summary

Today we learned how to think about dynamics of a system.
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“Thinking” like an op amp

We should not think about an op amp as sequentially com-
puting its response.

+
−

Vi

V+

V−

Vo

+
−

K(V+−V−)

time

Vo

1

−10

= 22

Op amp delays are more gradual! 33



Analyzing Op Amp Circuits

Furthermore, op amps can be thought of as instantaneous
constraint solvers if and only if the feedback is negative.

+
−

Vi

V+

V−

Vo

+
−

K(V+−V−) Vo
Vi
=

K
K + 1

stable

+
−

Vi

V+

V−

Vo

+
−

K(V+−V−) Vo
Vi
=

K
K − 1

unstable
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Leaky Tanks and Capacitors

Physically, an op amp operates as a pump that moves charge
and thus changes the output voltage.

Water accumulates in a leaky tank and changes height.

ri (t)

ro (t)
h(t)

Charge accumulates in a capacitor and changes voltage.

C v
+

−

ii io
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Summary

Today we learned how to think about dynamics of a system.

ri (t)

ro (t)
h(t) C v

+

−

ii io

We analyzed a model for the dynamics of an op amp and
found a relation between gain and speed that is fundamental
to the use of feedback.

0 5 10
time (ms)

Vo

K = 1

K = 10
K = 100K = 1000
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