6.01, Spring Semester, 2008—Exploration 9, Issued: Thursday, April 10 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.01—Introduction to EECS 1
Spring Semester, 2008

Exploration 9, Issued: Thursday, April 10

This exploration is due April 24 or 25 in your design lab.

Option 1: More abstract circuit specifications

This part of the exploration is worth 5 out of 10 points. If you plan to do option 2, you should do
it instead of option 1. If you do option 1 in isolation first, you are likely to find that your solution
cannot be extended easily to option 2.

Solving a circuit this way is a lot easier than using a pencil and paper, but it’s still kind of a pain
to specify the circuit. We find that we often make mistakes with the signs on the KCL constraints.
The fact is that, once we know what the components in the circuit are, and how they’re connected
together, the entire circuit is specified. In the language we used for last week’s lab, we could do
our job with simpler specifications:

¢ = Circuit ([Resistor(ra, ’nl1’, ’n2’),
Resistor (rb, ’nd4’, ’nl1’),
Resistor(rd, ’n4’, ’n3’),
Wire(’n4’, ’n2’),
VSrc(vc, ’n2’, ’n3’)])

c.solve(’n3’)

In this specification, we still have to name the nodes, but not the currents. Then, for each compo-
nent, we just specify its value and its terminals. The order of the terminals still has to agree with
the order of the variables in the underlying constraint function.

Use the underlying constraint-solving code from this week’s lab to implement a system similar to
the one we used last week. Your solution should:

e Provide a convenient way to specify circuits (just saying what the components are and how
they are connected together, but not specifying currents);

e Implement resistors, voltage sources, and op-amps;
o Make it relatively easy to add new components with linear constraints; and

e Display solutions nicely.

Exploration 1: Hand in your code and demonstrate it on the example in figure 3 of software
lab 9.

Exploration 2: Explain what someone would have to do to add a new type of component.

6.01, Spring Semester, 2008—Exploration 9, Issued: Thursday, April 10 2

Option 2: Defining and using new primitives

This option is quite difficult. It is worth 10 points. You can do it as an alternative to option 1.

So far, in all of our circuit sepcification methods, we have been able to define primitives and means
of combining them. We haven’t however, been able to build and use abstractions very effectively
during circuit specification. We would like to be able to define the pattern of a voltage divider or
an inverting amplifier, and then use it as a component in future circuits we might design.

So, your goal in this exploration is to implement a system that will:

e Provide a convenient way to specify circuits (just saying what the components are and how
they are connected together);

e Implement resistors, voltage sources, and op-amps;

e Allow you to take circuits patterns that you have already specified and use them as compo-
nents in future circuits; and

e Display solutions nicely.

Note that there is an important difference between the generic idea of an inverting amplifier or
a buffered voltage divider and any particular instance of one. A particular instance has actual
voltages and currents, and you can’t put two copies of the same instance in a circuit.

This is a very hard problem that can be approached in several ways. Below, we show you some
structures that we built using our solution to this problem. We provide it here to show you the
basic idea of what we want, and to give you some idea of one way to go about it. But it is not
crucial to approach it this way (for example, you might find it easier or more beautiful to make the
program more functional and less object-oriented than we have here).

A voltage divider with resistance r1 on top and T2 on the bottom.
Needs mnames of top, middle, and bottom nodes.
class Divider (Circuit):
def __init__(self, r1, r2, nHi, nOut, nLo):
Just make a circutt with two resistors, conmnected in the
right way
Circuit.__init__(self, [Resistor(rl, nHi, nOut),
Resistor (r2, nOut, nLo)])

Two dividers connected together (in our familiar configuration that

doesn’t divide by 4). Uses all the same resistance, for simplicity.
class DoubleDivider (Circuit):
def __init__(self, r, vPlus, vOut, vMinus):

Each new instance of this circuit will have a different

internal node (the output of the first divider). So, we

have to generate a new name for that node each time

through. (See code for gensym for detatls).

middleNode = gensym(’divider’)

Now, make a circuit with two dividers, connected up appropriately.

Circuit.__init__(self,
[Divider(r, r, vPlus, middleNode, vMinus),
Divider(r, r, middleNode, vOut, vMinus)])

A common wiring pattern for an op-amp is a simple follower

6.01, Spring Semester, 2008—Exploration 9, Issued: Thursday, April 10

class Follower (Circuit):
def __init__(self, vIn, vOut):
Circuit.__init__(self, [OpAmp(vIn, vOut, vOut)])

A wvoltage divider with resistance rl1 on top and 72 on the bottom.
Needs mnames of top, middle, and bottom mnodes. Output of the divider
1s run through a follower. This ts how we made virtual ground.
class BufferedDivider (Circuit):
def __init__(self, r1, r2, nHi, nOut, nLo):
Have to generate a name for the node that %s the output of
the divider and the input to the follower
middleNode = gensym(’divider’)
Circuit.__init__(self, [Resistor(rl, nHi, middleNode),
Resistor (r2, middleNode, nLo),
Follower (middleNode, nOut)])

Connecting two buffered dividers does actually divide by 4
class DoubleBufferedDivider (Circuit):
def __init__(self, r, vPlus, vOut, vMinus):
Have to gemerate a name for the node that is the output of
the first divider and the top of the second divider
middleNode = gensym(’doubleDivider’)
Circuit.__init__(self,
[BufferedDivider(r, r, vPlus, middleNode, vMinus),
BufferedDivider (r, r, middleNode, vOut, vMinus)])

Inverting amplifiers are a handy pattern. We specify input and
output nodes, and the multiplier we desire
(so that vOut = multiplier * vIn)
class InvertingAmplifier (Circuit):
def init__(self, multiplier, vIn, v0Out):

Just pick a value for the input resistor

r = 100.0
Need a mame for the node that is the minus input to the op amp
vMinus = gensym(’vMinusAmp’)

Put a resistor on the input and another resistor (r *
multiplier) on the feedback path of an op amp
components = [Resistor(r, vIn, vMinus),
Resistor (r*multiplier, vOut, vMinus),
OpAmp(’gnd’, vMinus, vOut)]
Circuit.__init__(self, components)
Testing the inverting amplifier
>>> ¢ = Circuit ([VSrc (10, ’vIn’, ’gnd’),
InvertingAmplifier (2, ’vIn’, ’vOut’)])
>>> c.solve ()
[(1, ’vIn’), (-1, ’gnd’), (10, None)]
[(1, ’vIn’), (-1, ’vMinusAmp2’), (-100.0, ’i3’), (0, Nomne)]
[(1, ’v0Out’), (-1, ’vMinusAmp2’), (-200.0, ’i4’), (O, Nomne)l]
[(1, ’v0Out’), (-1, ’gnd’), (-10000, ’gnd’), (10000, ’vMinusAmp2’), (0, None)]
[(1, ’gnd’), (0, None)]
[(1, °i3’), (1, ’i4’), (0, Nomne)l
[(-1, ’i1’), (-1, ’i3’), (0, Nomne)]
[(-1, °i4°), (-1, ’iOpAmp5’), (0, Nomne)]
gnd = 1.46975764892e-15
i1l -0.0999800059982
i3 0.0999800059982
id = -0.0999800059982

6.01, Spring Semester, 2008—Exploration 9, Issued: Thursday, April 10 4

i0pAmp5 = 0.0999800059982

vin = 10.0

vMinusAmp2 = 0.00199940017995
vOut = -19.9940017995

You might find this strategy for generating brand new names useful:

Generate mnew symbols guaranteed to be different from one another
Optionally, supply a prefix for mnemonic purposes
class SymbolGenerator:
def __init__(self):
self.count = 0
def gensym(self, prefix = ’i’):
self.count += 1
return prefix + str(self.count)

Call gensym("foo") to get a symbol like ’foo37’
gensym = SymbolGenerator ().gensym

Exploration 3: Hand in your code. Show how to define a summer and a differential amplifier.
Use a combination of these amplifiers to make a circuit that takes three voltages as inputs
and outputs 2 * vy + 3 *x vy — 0.5 % v3.

