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Constraint Systems and Circuits

Circuits

Electrical circuits are made up of components, such as resistors, capacitors, inductors, and tran-
sistors, connected together by wires. You can make arbitrarily amazing, complicated devices by
hooking these things up in different ways, but in order to help with analysis and design of circuits,
we need a systematic way of understanding how they work.

As usual, we can’t comprehend the whole thing at once: it’s too hard to analyze the system at
the level of individual components, so, again, we’re going to build a model in terms of primitives,
means of combination, and means of abstraction. The primitives will be the basic components, such
as resistors and op-amps; the means of combination is wiring the primitives together into circuits.
We’ll find that abstraction in circuits is a bit harder than in software or linear systems: separately
designed parts of a circuit tend to influence one another when they are connected together, unless
you design very carefully. We’ll explore a number of examples of when and how the abstractions
can help us, but also when they can leave out important detail and require different models.

Constraint Models

So far, we have looked at a number of different models of systems. We have thought of software
procedures as computing functions, of a robot “brain” as performing a transuction from a stream
of inputs to a stream of outputs, and of linear systems as a special subclass of transductions that
we can analyze for stability and other properties. In each case, we were able to construct or analyze
the behavior of sub-parts of the system, as functions or transductions, and then abstract away from
their implementations, use them to build more complex systems, and use the understanding of the
components to understand the larger system.

Now we’re going to consider a different class of systems that has a kind of modularity, but where,
typically, you have to have a description of the entire system in order to say what is going to happen
in a local piece of it. We will be able to view the subparts as putting “constraints” on the overall
global behavior of the system; once enough pieces are put togther and their constraints are taken
together, the behavior of the entire system will be specified.

One intuitive example is a set of rigid rods connected together with pins, all resting flat on a table.
If we specify the x, y coordinates of the end points of one rod, and the lengths of the other rods, and
the way in which they’re connected together, we have described a set of constraints on the positions
of all the rods. If, for example, we connect 4 rods of length 1 in a square, then the positions of
the other rods are not completely specified, because the square can be squashed into a number of
different rhombuses. On the other hand, if we connect only three rods into a triangle, then the
position of the third vertex will be completely specified.
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We will use this way of thinking about and specifying the behavior of a system to understand
simple electrical circuits as systems of constraints.

Voltage and current

Voltage is a difference in electrical potential between two different points in a circuit. We will,
generally speaking, pick some point in a circuit and say that it is “ground” or has voltage 0.
Now, every other point has a voltage defined with respect to ground. Because voltage is a relative
concept, we could pick any point in the circuit and call it ground, and we would still get the same
results.

Current is a flow of electrical charge through a path in the circuit. A positive current in a direction
is generated by negative charges (electrons) moving in the opposite direction.1 We’re not going to
worry about the details of what particles are doing what (until we get to semiconductors, in another
class). We’ll just have to be careful when we draw and describe circuits to label the directions of
the currents we’re talking about.

Static circuit model

A circuit is made up of a set of components, wired togther in some structure. Each component has
a current flowing through it, and a voltage difference across its two terminals (points at which it is
connected into the circuit). Each type of component has some special characteristics that govern
the relationship between its voltage and current.

One way to model circuits is in terms of their dynamics. That is, to think of the currents and
voltages in the system and how they change over time. Such systems are appropriately modeled, in
fact, using differential or difference equations, connected togther into complex systems, as we saw
in the last couple of weeks. In the next chapter, we will consider a dynamic model of a circuit.

But for many purposes, the dynamic properties of a circuit converge quickly, and we can directly
model the equilibrium state that they will converge to. The combination of the behavior of the
components and the structure in which they’re connected provides a set of constraints on the
equilibrium state of the circuit. We’ll work through this view by starting with the constraints that
come from the structure, and then examining constraints for two simple types of components.

Conservation laws

The first set of constraints we get in a circuit are conservation laws. They describe properties of
the circuit that have to be true, no matter what kinds of components we put into it. We’ll describe
our two conservation laws using the circuit in figure 1A. For now, don’t worry about what’s in
the components labeled A through D. You can see that we’ve labeled the current through each
component with an arrow, and named it ix. We can choose these arrows to point in any direction
we like, as long as we treat them consistently. For each component, we can also talk about the
voltage drop across the component, which we’ve labeled vx. It is the potential difference between

1At the semi-conductor level, it can also be viewed in an oversimplified way as as “holes” or positive charges
moving in the direction of the current.
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Figure 1: A. Circuit with four components. B. Circuit with three resistors and a voltage source.

the terminal labeled ’+’ and the terminal labeled ’-’, which should agree with the direction of the
current for the component, flowing from ’+’ to ’-’.

Kirchhoff’s Voltage Law (KVL)

Kirchhoff’s voltage law is one source of constraints that govern the behavior of a circuit. It says
that:

The algebraic sum of voltage drops taken around any loop in a network is equal to
zero.

So, in our figure, we know that −vD + vB + vA + vC = 0. We also know that −vD + vC = 0, and
that vB + vA = 0. Once you’ve established positive and negative terminals on your components,
then be sure you as you follow a loop around, you treat the voltage drops consistently with their
orientation in the circuit.

Kirchhoff’s Current Law (KCL)

Each place in a circuit where two or more components connect is called a node, and we can label
each of them with a node name.

Kirchhoff’s current law is another source of constraints that govern the behavior of a circuit. It
says that:

The algebraic sum of currents entering any node must be zero.

We can write a KCL equation for each node in our circuit. Since there is a wire connecting nodes
n2 and n4, in fact they have the same voltage, and can be considered as a single node for the
purposes of analysis. So, we have, at node n1, that iB − iA = 0. At node n2, because it’s the same
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as node n4, things are a little tricky. We have incoming current from A, and current flowing out
through B, C, and D. So, we get the equation: iA − iB − iC − iD = 0. Remember that the signs
of these currents and their directions are all a matter of convention: we don’t actually know yet
whether the voltage at n2 will be higher than the voltage at n1 or not.

Node n3 is connected to the ground symbol, which means we will treat it as having voltage 0. So,
we can speak, now, of the voltage at node n1, which we’ll write v1, which is really the voltage
difference between n1 and n3. We will say that we’ve solved a circuit, when we’ve been able to
figure out the voltages at all the nodes and the currents through all the components.

Elements

Now we need to know what the actual elements of the circuit are, in order to know how it is going
to behave. In this course, we’ll start by considering two very basic elements: independent voltage
sources and resistors. In each case, we can describe the components in terms of a constraint they
induce on the voltages and currents associated with them.

Voltage Source

An ideal voltage source with voltage v always maintains a voltage difference of v between its
terminals, independent of the current flowing through the node. Batteries, in the nominal part of
their operating range, can be treated as ideal voltage sources. Voltage sources are typically drawn
as circles with plus and minus terminals and an associated voltage. In figure 1B, we’ve replaced
component C with a voltage source, with voltage Vc.

Resistor

A resistor is a component that satisfies Ohm’s law: v = iR, where R is the resistance, in Ohms (Ω)
of the resistor, i is the current, in Amps, flowing through it, and v is the voltage drop across it,
in the the same direction as the current is considered to be flowing. In figure 1B, we’ve replaced
components A, B, and D with resistors.

Solving the circuit

Let’s see if we can solve the circuit shown in figure 1B. We can write down a complete set of
constraints describing the circuit, by dividing them into three groups.

KCL For every node that isn’t connected to ground, assert that the sum of incoming currents is
0 (remember that nodes n2 and n4 are really the same):

iA − iB − iD − iC = 0

iB − iA = 0 .
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Ground For every node that is connected to ground, assert that its voltage is 0:

v3 = 0 .

Constitutive equations For every component, or constituent, in the circuit, describe the con-
straints it asserts on the associated voltages and currents.

(v1 − v2) = iA · RA

(v4 − v1) = iB · RB

(v4 − v3) = iD · RD

v2 = v4

v2 − v3 = Vc .

Because these constraints connect the components in the network structure, they will also embody
the KVL constraints; it is generally much more straightforward to write down these constitutive
relations than KVL constraints, and so we will proceed this way in all of our circuit analyses.

Solving So, now, if we know RA, RB, RD, and VC, which are the specifications of our components,
we have 8 linear equations in 8 unknowns (v1, v2, v3, v4, iA, iB, iC, and iD). Just a small (though
possibly tedious) matter of algebra, and we’re done.

As an example, let RA = 100Ω, RB = 200Ω, RD = 100Ω, and VC = 10V. Then, we get v2 = v4 =

10V; iA = iB = 0A (that’s reasonable: why would any current bother going that way, when it can
just run through the wire from n2 to n4?); and iD = 0.1A, which is pretty straightforward.

What happens when we take out the wire from n2 to n4? Now we have iA = iB = iC = −0.025A,
iD = 0.025A, v1 = 7.5V , v2 = 10V , and v4 = 2.5V .

Common Patterns

There are some common patterns of resistors that are important to understand and that can be
used over and over again as design elements.

Resistors in series

Figure 2(a) shows two resistors connected together in a circuit with a voltage source. It induces a
simple set of constraints:

iA − iC = 0

iB − iA = 0

v3 = 0

v1 − v2 = iA · RA

v3 − v1 = iB · RB

v2 − v3 = Vc
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Figure 2: Resistors in combination.

What happens when we solve? First, it’s easy to see that because there’s a single loop, KCL implies
that the current across each of the nodes is the same. Let’s call it i. Now, we can add together the
third and fourth equations, and then use the last equation to get

v3 − v2 = iARA + iBRB

v3 − v2 = i(RA + RB)

−Vc = i(RA + RB)

−i =
Vc

RA + RB

The interesting thing to see here is that we get exactly the same result as we would have had if
there were a single resistor R, with resistance RA + RB. So, if you ever see two or more resistors in
series in a circuit, with no other connections from the point between them to other components,
you can treat them as if it were one resistor with the sum of the resistance values. This is a nice
small piece of abstraction.

It might bother you that we got something that looks like v = −iR instead of v = iR. Did we do
something wrong? Not really. The reason that it seems funny is that the directions we picked for
the currents iA and iB turn out to be “backwards”, in the sense that, in fact, the current is running
in the other direction, given the way we hooked them up to the voltage source. But the answer is
still correct.

Question 1: Go back to the circuit of figure 1B with the diagonal wire removed. You should be
able to construct an equivalent circuit with only one resistor. What is its resistance value?

Resistors in parallel

Now, in figure 2(b), we have a simple circuit with two resistors in parallel. Even though there
are a lot of wires being connected together, there are really only two nodes: places where multiple
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components are connected. Let’s write down the equations governing this system.

First, applying KCL to n1 and n2, we get

iA + iB − iC = 0

−iA − iB + iC = 0 ,

which is the same constraint written two ways. Now, setting v2 to ground, and describing the other
components, we have:

v2 = 0

v2 − v1 = iA · RA

v2 − v1 = iB · RB

v1 − v2 = Vc

We can simplify this last set of constraints to

−VC = iA · RA

−VC = iB · RB

so

iA = −
Vc

RA

iB = −
Vc

RB

Plugging these into the KCL equation, we get:

iA + iB − iC = 0

−
Vc

RA
−
Vc

RB
= iC

−Vc
RA + RB

RARB
= iC

−Vc = iC
RARB

RA + RB

What we can see from this is that two resistances, RA and RB, wired up in parallel, act like a single
resistor with resistance RARB

RA+RB
. This is another common pattern for both analysis and design. If

you see a circuit with parallel resistors connected at nodes n1 and n2, you can simplify it to a
circuit that replaces those two paths between n1 and n2 with a single one with a single resistor.

Voltage divider

Figure 3(a) shows part of a circuit, in a configuration known as a voltage divider. Using what we
know about circuit constraints, we can determine the following relationship between Vout and Vin:

Vout =
RB

RA + RB
Vin .
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Figure 3: Voltage dividers.

Let’s go step by step. Here are the basic equations:

v0 = 0

iA − iB = 0

Vin − Vout = iARA

Vout − v0 = iBRB

We can start by seeing that iA = iB; let’s just call it i. Now, we add the last two equations to each
other, and do some algebra:

Vin − v0 = iRA + iRB

Vin = i(RA + RB)

i =
Vin

RA + RB

Vin − Vout = iRA

Vin − Vout = Vin
RA

RA + RB

Vin(RA + RB) − Vout(RA + RB) = VinRA

VinRB = Vout(RA + RB)

Vout = Vin
RB

RA + RB

So, for example, if RA = RB, then Vout = Vin/2. This is a very handy thing: if you need a voltage
in your circuit that is between two values that you already have available, you can choose an
appropriate RA and RB to create that voltage.

Well, almost. When we wrote iA − iB = 0, we were assuming that there was no current flowing
out Vout. But, of course, in general, that won’t be true. Consider figure 3(b). We’ve shown an
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additional “load” on the circuit at Vout with a resistor RL standing for whatever resistance that
additional load might offer to the ground node n0. This changes matters considerably.

To see what is going to happen, we could solve the whole circuit again. Or, we could observe
that, between the node labeled Vout and n0, we have two resistances, RB and RL in parallel. And
we’ve already see that resistances in parallel behave as if they are a single resistor with value
RBRL/(RB + RL). So, (you do the algebra), our result will be that

Vout = Vin
RB

RA + RB + RARB
RL

.

The lesson here is that the modularity in circuits is not as strong as that in programs or our
difference equation models of linear systems. How a circuit will behave can be highly dependent on
how it is connected to other components. Still, the constraints that it exerts on the overall system
remain the same.

Circuit Equivalents

We just saw that pieces of circuits cannot be abstracted as functional elements; the actual voltages
and currents in them will depend on how they are connected to the rest of a larger circuit. However,
we can still abstract them as sets of constraints on the values involved.

In fact, when a circuit includes only resistors and voltage sources, we can derive a much simpler
circuit that induces the same constraints on currents and voltages as the original one. This is a
kind of abstraction that’s similar to the abstraction that we saw in linear systems: we can take a
complex circuit and treat it as if it were a much simpler circuit.

If somebody gave you a circuit made of resistors and voltage sources, and put it in a black box
with two wires coming out, labeled + and -, what could you do with it? You could try to figure
out what constraints that box puts on the voltage between and current through the wires coming
out of the box.

We can start by figuring out the open-current voltage across the two terminals. That is the voltage
drop we’d see across the two wires if nothing were connected to them. We’ll call that Voc. Another
thing we could do is connect the two wires together, and see how much current runs through them;
this is called the short-circuit current. We’ll call that isc.

It turns out that these two values are sufficient to characterize the constraint that this whole box
will exert on a circuit connected to it. The constraint will be a relationship between the voltage
across its terminals and the current flowing through the box. We can derive it by using Thévenin’s
theorem:

Theorem 1 Any combination of voltage sources and resistances with two terminals can be replaced
by a single voltage source Vth and a single series resistor Rth. The value of Vth is the open circuit
voltage at the terminals Voc, and the value of Rth is Vth divided by the current with the terminals
short circuited (−isc).

Let’s look at a picture, then an example. In figure 4(a) we show a picture of a black (well, gray)
box, abstracted as being made up of a circuit with a single voltage source Vth and a single resistor
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Figure 4: Thévenin equivalence examples

Rth in series. The open-circuit voltage from n+ to n− is clearly Vth. The short-circuit current
isc (in the direction of the arrow) is −Vth/Rth. So, this circuit would have the desired measured
properties.2

Figure 4(b) shows an actual circuit. We’ll compute its associated open-circuit voltage and short-
circuit current, construct the associated Thévenin equivalent circuit, and be sure it has the same
properties.

The first step is to compute the open-circuit voltage. This just means figuring out the difference
between the voltage at nodes n+ and n−, under the assumption that the current i = 0. An easy
way to do this is to set n− as ground and then find the node voltage at n+. Let’s write down the
equations:

v+ − v1 = iARA

v1 − v− = Vs

v+ − v− = iBRB

−iA − iB = 0

iA − iS = 0

v− = 0

We can solve these pretty straightforwardly to find that

v+ = Vs
RB

RA + RB
.

2The minus sign here can be kind of confusing. The issue is this: when we are treating this circuit as a black
box with terminals n+ and n−, we think of the current flowing out of n+ and in to n−, which is consistent with the
voltage difference Vth = V+ − V−. But when we compute the short-circuit current by wiring n+ and n− together,
we are continuing to think of isc as flowing out of n+, but now it is coming out of n− and in to n+, which is the
opposite direction. So, we have to change its sign to compute Rth.
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So, we know that, for this circuit, Rth = Vs
RB

RA+RB
.

Now, we need the short-circuit current, isc. To find this, imagine a wire connecting n+ to n−; we
want to solve for the current passing through this wire. We can use the equations we had before,
but adding equation 4 wiring n+ to n−, and adding the current isc to the KCL equation 5.

v+ − v1 = iARA (1)
v1 − v− = Vs (2)
v+ − v− = iBRB (3)

v+ = v− (4)
isc − iA − iB = 0 (5)

iA − iS = 0 (6)
v− = 0 (7)

We can solve this system to find that

isc = −
Vs

RA
,

and therefore that

Rth = −
Vth

isc

= Vs
RB

RA + RB

Vs

RA

=
RARB

RA + RB

What can we do with this information? We could use it during circuit analysis to simplify parts of
a circuit model, individually, making it easier to solve the whole system. We could also use it in
design, to construct a simpler implementation of a more complex network design. One important
point is that the Thévenin equivalent circuit is not exactly the same as the original one. It will
exert the same constraints on the voltages and currents of a circuit that it is connected to, but will,
for example, have different heat dissipation properties.

Example

Here’s another example, in figure 5(a). It’s a bit more hassle than the previous one, but you
can write down the equations to describe the constituents and KCL constraints, as before. If we
let RA = 2KΩ, RB = RC = RD = 1KΩ, and VS = 15V, then we can solve for Vth = 7.5V and
Rth = 2KΩ. So, it is indistinguishable by current and voltage from the circuit shown in figure 5(b).

In figure 6(a) we show the same circuit, but with the connections that run outside the box made
to different nodes in the circuit. Note also that the top lead is marked n− and the bottom one
n+. If we solve, using the same values for the resistors and voltage source as before, we find that
Vth = −3.75V and Rth = 1750Ω. We show the Thévenin equivalent circuit in figure 6(b). We’ve
changed the polarity of the voltage source and made it 3.75V (instead of having the + terminal at
the top and a voltage of -3.75), but that’s just a matter of drawing.

These results are quite different: so, the moral is, it matters which wires you connect up to what!

LPK: I was inspired by the treatments in Electronic Circuits and Applications by Wedlock and
Senturia, and the Wikipedia article on voltage dividers.
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