
6.01, Spring Semester, 2008—Assignment 6, Issued: Tuesday, Mar. 11 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.01—Introduction to EECS I
Spring Semester, 2008

Assignment 6, Issued: Tuesday, Mar. 11

Overview of this week’s work

In software lab

• Work through the software lab.
• Paste your solution to questions 1 and 4 into the PS.7.1 in the tutor.

Before the start of your design lab on Mar 13 or 14

• Read the class notes and review the lecture handout.
• Do the on-line tutor problems in section PS.7.2.
• Read the entire description of the design lab, so that you will be ready to work on it when you

get to lab.

In design lab

• Take the nanoquiz in the first 15 minutes; don’t be late.
• Work through the design lab with a partner, and take good notes on the results of your work.

At the beginning of your next software lab on Mar 18 or 19

• Submit written solutions to all the questions in this handout. All written work must conform
to the homework guidelines on the web page.

An ex camera midterm will be given on Wednesday 19 March:

• You may pick up a copy in 34-501 any time between 8:30AM and 7PM on
Wednesday 19 May.

• You must return your answers by 3 hours after the time you picked up the
exam.

• You must do the exam by yourself; you may read anything (including written
notes, or the web) but you may not communicate with anyone.

• We will have lecture, software lab, and design lab that week; attendance at
lab is mandatory as usual, but there will be no lab report on those labs.

• If you do not have a three-hour block of time available on 19 May, send
email to lpk@csail.mit.edu, and we’ll schedule a conflict exam time.

6.01, Spring Semester, 2008—Assignment 6, Issued: Tuesday, Mar. 11 2

Software Lab: Combining System Functions

• Get the lab6 files via athrun 6.01 update or from the home page.
• If you’re on an Athena machine, do add -f 6.01.

In this software lab, we will continue to build up the functionality of our SystemFunction class, by
adding methods to create new system functions out of old ones. Then, we’ll use the combination
methods to build new system functions and try to build intuition for what is happening.

System Function combinators

To get started, we have to understand something about how system functions are represented inside
the SystemFunction class, and what arguments its initializer needs.

Internally, we represent system functions using a pair of polynomials in R; to create a new instance
of the system function class, we need to pass in two instances of the Polynomial class. Here is the
definition of the helper function we used in last week’s lab:
def systemFunctionFromDifferenceEquation(outputCoeffs , inputCoeffs):

return SystemFunction(Polynomial(reverseCopy(inputCoeffs)),

Polynomial(reverseCopy(outputCoeffs)))

Let’s look at what’s going on here, in detail. First, as you know, the arguments to
systemFunctionFromDifferenceEquation are a list of coefficients of the y terms, starting with
y[n] and going back to y[n− k], and a list of the coefficients of the x terms, starting with x[n] and
going back to x[n− j]. That is, if the difference equation is

a0y[n] + a1y[n− 1] + ...+ aky[n− k] = b0x[n] + b1x[n− 1] + ...+ bjx[n− j] ,

then outputCoeffs is [a0, a1, . . . , ak] and �inputCoeffs is [b0, b1, . . . , bk].

If we convert this difference equation into an operator equation, then we get

Y(a0 + a1R+ a2R
2 + ...+ akR

k) = X(b0 + b1R+ b2R
2 + ...+ bjR

j) .

So, our system function is going to be described by the two polynomials in R. Remembering that
we have to specify polynomials with the high-order coefficients first, that means that the arguments
to SystemFunction need to be [bj, bj−1, . . . , b0] and [ak, ak−1, . . . , a0]. This makes it clear that we
need to reverse the order of the coefficients when we create the operator polynomials in the system
function. We wrote the utility function reverseCopy that takes a list as an argument and returns
a list that contains the elements of the original list in reverse order (but unlike the Python reverse
operator, doesn’t change the original list).

So, we make a system function by putting the coefficients in the right order for the operator
polynomials and call the SystemFunction constructor on them.

Cascade When we connect two system with system functions H1 and H2 together, we get a new
system with system function H1 · H2. In the file SystemFunctionToBeEdited.py, you’ll find the
cascade method defined, but just containing a pass statement.

To test your systems’ behavior more easily, we have provided a method of the SystemFunction
class called transduceF. It takes the same arguments as plotSequence: a list of j previous values

6.01, Spring Semester, 2008—Assignment 6, Issued: Tuesday, Mar. 11 3

of x (x[−j], . . . , x[−1]), a list of k previous values of y (y[−k], . . . , y[−1]), a function mapping n ≥ 0
into x[n], and a number of points to be generated (defaults to 30).

Question 1: Fill in the cascade method, so that it returns a new system function that is
equivalent to the cascade of the system functions it is given as arguments. Be sure that
neither of the original system functions is modified.

Question 2: Make a cascade of two systems each of which delays the input by two. Look at the
system function of the resulting system. Does it do what you expect? (If new is your new
system function, you should try

new.transduceF ([10, 20, 30, 40], [], lambda n: n)

Be sure you know what the answer should be before you try it.)

Question 3: Write the difference equation associated with the resulting system function.

Feedback Figure 1 shows a feedback configuration that is frequently used: the output, Y, of a
system H1 is “fed back” through a system H2 to yield signal W. This signal is subtracted from
the input X to yield an “error” signal E, which is the input to H1. We can describe this system
algebraically:

Y = H1E

E = X−W

W = H2Y

Now, we can solve that system of equations, to find that

Y =
H1

1+H1H2
X .

This is known as Black’s formula, and it gives us a characterization of the composite system, HB,
that we can think of as mapping from X to Y.

In the file SystemFunctionToBeEdited.py, you’ll find the feedback method defined. The body
curently contains:

if h2 == None:

h2 = SystemFunction(Polynomial ([1]), Polynomial ([1]))

pass

The first two lines say that if the system function H2 is unspecified, to simply use one with 1 in the
numerator and denominator, which passes the input straight through to the output with no delay.

6.01, Spring Semester, 2008—Assignment 6, Issued: Tuesday, Mar. 11 4

H1+
-

H2

YX E

W

HB

Figure 1: Feedback system

Question 4: Fill in the feedback method, so that if h1 and h2 are SystemFunctions, then

h1.feedback(h2)

is the system function for the system HB in the figure above. Be sure that neither of the
original system functions is modified. Also, specify the numerator and denominator of the
new system function as simply as possible.

Question 5: Let H be the system function for a system that delays its input by one time step
and doubles it. Apply the feedback operation to it. As a test, if your new system is called
new, try:

new.transduceF ([1], [0], lambda n: 0)

Be sure you understand what the arguments mean, and explain what the output should be,
and why.

Robot meets walls, both ways

Now, go back to the problem from software lab 5, where we drove the robot toward the wall and
tried to stop Ddesired from the wall. If you think of Ddesired − D = E as the error signal above
(it might help to draw an instance of the feedback figure, and to remember that the signal W is
subtracted from X to get E), then you can construct the system function of the whole system by
defining system functions for the components, and composing them with cascade and feedback.

You should put your system function definitions for this lab in the file lab6/ps6work.py. You can
use Run Module in Idle to evaluate these definitions in the Python interpreter.

Question 6: Define (in Python) the system function that maps E into V .

Question 7: Define the system function that maps V into D.

Question 8: Cascade those two systems to get one that maps E into D.

Question 9: Use feedback to make a system that maps Ddesired into D.

Question 10: Look at the system function. Is it the same or different from the one that you
derived by hand in lab 5?

6.01, Spring Semester, 2008—Assignment 6, Issued: Tuesday, Mar. 11 5

We’ll do this again, with the problem from design lab 5, where we tried to drive the robot stably
down a corridor. Remember that:

• d[n] is the distance of the robot to the left of the centerline of the hallway

• d[n] ≈ d[n− 1] + VδTθ[n− 1]

• Ω[n] is the robot’s rotational velocity at time n

• θ[n] is the robot’s angle with respect to the centerline of the hallway at time n

• We’re assuming that Ω[n] is instantaneously dependent on d[n] and dDesired [n]

Question 11: Define the system function that maps E into Ω.

Question 12: Define the system function that maps Ω into Θ.

Question 13: Define the system function that maps Θ into D.

Question 14: Cascade those three systems to get one that maps E into D.

Question 15: Use feedback to make a system that maps Ddesired into D.

Question 16: Look at the system function. Is it the same or different from the one that you
derived by hand in lab 5?

6.01, Spring Semester, 2008—Assignment 6, Issued: Tuesday, Mar. 11 6

Figure 2: Robot in corridor.

Design Lab: Better Driving

• Get the lab6 files via athrun 6.01 update or from the home page.
• Get a lab laptop, a robot, a serial cable and a USB cable.

In the design lab of last week, you wrote a simple controller to steer your robot down a narrow
corridor as shown in Figure 2. The controller set the forward velocity V to a constant (0.1 m/s) and
the angular velocity Ω to be proportional to the error signal e[n] which is the difference between
the desired distance ddesired and the current position d = (dright − dleft)/2.

As you recall from last week, we found that there was no good value for the constant of proportion-
ality K between error and angular velocity. For small values of K the robot is sluggish and barely
corrects errors and, for higher values, the robot moves with growing oscillations.

Designing a better controller

In order to design a better controller, we can try to process the error e[n] in a more sophisticated
way. For example, one could adjust the angular speed using some combination of the present and
previous values of the displacement error,

Ω[n] = K1e[n] + K2e[n− 1]. (1)

The robot angle, as before, satisfies the difference equation

θ[n] = θ[n− 1] + δTΩ[n− 1]. (2)

Recall also that the position of the robot d can be computed from the angle θ and velocity V as

d[n] = d[n− 1] + δTVθ[n− 1]. (3)

Finally, the error e[n] is the difference between the desired and actual positions,

e[n] = ddesired[n] − d[n]. (4)

6.01, Spring Semester, 2008—Assignment 6, Issued: Tuesday, Mar. 11 7

Ω
E

Θ
Ω

D
Θ+Ddesired D

−

Figure 3: Block diagram of system described by equations 1-4.

Equations 1-3 can be represented by system functions that can be combined with a feedback loop
(equation 4) as shown in Figure 3.

You should put your system function definitions for this lab in the file lab6/ps6work.py. You can
use Run Module in Idle to evaluate these definitions in the Python interpreter.

Question 17: Use systemFunctionFromDifferenceEquation to represent each of equations 1-
3 as system functions. Assume that the parameters deltaT , V, K1, and K2 are available as
variables.

Question 18: Use the cascade method of SystemFunction to combine the previous three sys-
tem functions into one.

Question 19: Use the feedback method to convert the previous system function into one that
maps Ddesired to D.

Question 20: Write a function called makePositionController that takes numerical values for
δT , V, K1, and K2 and returns a SystemFunction that represents the transformation from
Ddesired to D.

Check your answer by using makePositionController to determine the system function
when δT = 0.2, V = 0.1, K1 = 10, and K2 = −1. Your answer should have the form

SF(-0.004 R**3 + 0.040 R**2/ -0.004 R**3 + 1.040 R**2 + -2.000R + 1.000)

The system function for the new position controller depends on two parameters that we will take
as constants (δT = 0.2 and V = 0.1) as well as two gains, K1 and K2, that we can adjust to optimize
performance.

Characterizing Performance

We can characterize the performance of a system by evaluating its poles. If the magnitude of any
pole is bigger than one, then the response of the system will grow without bound (i.e., it will be
“unstable”). If a system has multiple poles, then the one with the biggest magnitude will most
limit stability.

6.01, Spring Semester, 2008—Assignment 6, Issued: Tuesday, Mar. 11 8

Question 21: Determine the poles of the system with new position control for K1 = 10 and
K2 = −1 by running

makePositionController (0.2 ,0.1 ,10 , -1). poles()

Briefly describe how the values of these poles will affect performance of the system.

Question 22: Write a function maxMagnitude that takes K1 and K2 as inputs and returns the
maximum of the magnitudes of the poles of the system described by equations 1-4.

Optimizing Performance

Our goal is to find the values of K1 and K2 that give the most stable system performance. Thus we
need to find the values of K1 and K2 for which maxMagnitude(K1,K1) is smallest.

Question 23: Find the best values of K1 and K2 by exhaustively searching the two-dimensional
parameter space consisting of all integer values of K1 and K2 between −100 and 100. [Hint:
we have provided a function minOverGrid that can be used to apply minMagnitude itera-
tively over a two-dimensional grid of numbers that correspond to K1 and K2.]

Checkpoint: 60 minutes

• Demonstrate your optimized new position controller by substituting your best gains
into makePositionController and evaluating its poles.

Implementing the new position Controller

Modify feedbackBrain.py to implement the new position controller. You can start with the gains
K1 and K2 that worked best in the model. However, there are many reasons why those gains may be
too large. For example, there may be delays in the physical robot that are not explicitly accounted
for in equations 1-4, and adding delays tends to destabilize feedback loops. Physical systems are
also subject to random disturbances that we call noise. Noise can cause erratic behaviors, especially
when feedback systems employ large gains.

Question 24: Test your feedbackBrain.py using the values of K1 and K2 that you found to
have the smallest maxMagnitude. Briefly describe the resulting performance of the robot.
Try several different starting positions and angles.

Question 25: Try to make the robot steering more stable by reducing both gains by factors of
1/2, 1/4, 1/10, . . . Choose values of K1 and K2 that work well, and make plots of the robot’s
position as a function of time. What new problem is introduced when you reduce the gains?

Checkpoint: 120 minutes

• Demonstrate the new position controller with best performance on the robot. Com-
pare the values of K1 and K2 that work best on the robot to those that worked best
when you did the grid search. Explain any differences.

6.01, Spring Semester, 2008—Assignment 6, Issued: Tuesday, Mar. 11 9

+ +K3

−K4

Θ
Ω

D
Θ

Ddesired D
− −

Figure 4: Block diagram of system with position-plus-angle steering.

Going Around in Circles

One way to think about the new position controller is that it uses not only position information
(through e[n], provided ddesired is known) but also information about how fast position is changing
(through e[n] − e[n− 1], provided ddesired is constant). We know from our model that the rate of
change of d is proportional to the angle of the robot, θ. Thus, the new position controller has access
to both position and angle information when computing the next angular velocity. To make this
idea more concrete, let’s consider the case where ddesired = 0 for simplicity, and let Ω[n] represent
the angular velocity commanded on step n

Ω[n] = K1d[n] + K2d[n− 1] = α(d[n] + d[n− 1])/2+ β(d[n] − d[n− 1])/2 ≈ αd+ βθ

where α = K1 + K2 and β = K1 − K2 are the gains to position and angle, respectively. Best
performance was predicted for K2 ≈ −K1, which corresponds to a relatively large dependence on
angle compared to position.

There are two problems with calculating angle from differences in position. First, it introduces an
additional delay in the feedback loop, and delays tend to destabilize feedback. The second is that
relatively large values of gain are required to extract and emphasize angle. Both of these problems
can be avoided by estimating angle as well as position from the optical sensors.

Analyze Position-plus-Angle Steering

Position-plus-angle steering can be implemented by combining the following equation

Ω[n] = K3e[n] + K4θ[n] (5)

with equations 2-4. Figure 4 illustrates the relation between these equations using a block diagram.

Question 26: Write a function called makePositionPlusAngleSteering that takes numerical
values for δT , V, K3, and K4 and returns a SystemFunction that represents the transforma-
tion from Ddesired to D for position-plus-angle steering.

Question 27: Find the best values of K3 and K4 by exhaustively searching the two-dimensional
parameter space consisting of all integer values of K3 and K4 between −100 and 100.

6.01, Spring Semester, 2008—Assignment 6, Issued: Tuesday, Mar. 11 10

Using Position-plus-Angle Steering

Substitute the function sensors.getLRT for sensors.getLR in feedbackBrain.py. Like sensors.getLR,
sensors.getLRT returns l and r (the distances (in meters) to the left and right wall, respectively).
However, sensors.getLRT also returns the angle of the robot (in radians), with respect to the walls
(we assume that the robot is between straight, parallel walls). Implement a new controller that
depends on d[n] as well as the angle θ[n].

Question 28: Demonstrate your best position-plus-angle controller on the robot. Compare the
values of K3 and K4 that work best on the robot with those that worked best in simulation.
Explain any differences.

Checkpoint: 180 minutes

• Demonstrate the best position-plus-angle controller on the robot. Compare the values
of K3 and K4 that work best on the robot to those that worked best when you did the
grid search. Explain any differences.

Exploration: Will be issued separately

Concepts covered in this lab

• Learn about system functions and how they relate to difference equations.

• Learn how to combine system functions.

• Learn how to analyze feedback systems.

• Learn how to design controllers for feedback systems.

• Learn to characterize feedback systems by their stability and responsiveness.

