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Linear time-invariant systems (LTI)

• As block diagrams: Build from adders, (constant) gains, 
and delays – no other elements

• As difference equations: Linear with constant coefficients

• As operator equations: Built from addition, multiplication  
by constants, and “multiplication” by R
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Quiz (review)

• What is the system function for

The big fact

• The operator algebra mirrors the behavior of the 
system, so we can reason about combining 
systems by doing algebra.

• This is captured by the idea of a system 
function

• This is, the system can be represented by the 
ratio of output (y) to input (x) as expressed by 
the operator equation.
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Theorem

• We can manipulate operator expressions 
with the rules of ordinary algebra, 
including multiplication by R.

• If two LTI systems have the same system 
function, then they have the same 
input/output behavior

• Provided: All input signals are zero before 
some initial time

Patterns

system functionAbstraction

adder, gain, delayCombination

signalPrimitives

PCAP framework for signals and 
systems

p = -1.5 p = 1.5

p = 0.8

p = -0.8
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Poles

• The system function can be written in the form

• The p’s are the poles
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Quiz

What are the poles for
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Partial fraction expansion
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Provided the p’s are all distinct
Proof by algebra: Clear the fractions and solve 
for the c’s
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Any fraction
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How to compute the poles

Problem: Find the p’s such that
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Solution:  Substitute R=1/z to get

So the p’s are the roots of

Fibonacci system
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Poles of Fibonacci system
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Formula for the Fibonacci numbers
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Take y[0]=0 and y[1]=1 and solve for c1 
and c2:

This is an integer for all n!

Approximating fib[n]

fib[n]: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

Quiz
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Find the poles:
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Complex numbers in polar form
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See the course notes for the computation
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Stability for “bank account” system

Outside interval [-1,1]: 
unstable

inside interval: decays

On positive real 
axis: monotonic, i.e., 
On negative real 
axis, oscillates

+ ++
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Stability in general, with complex 
poles

Outside circle: unstable

inside circle: decays

On positive real 
axis: monotonic, i.e., 
theta = 0. On 
negative real axis, 
theta=180 degrees
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Oscillates with 
frequency theta

Generalizing the story (I): To 
arbitrary transient inputs

• The response to a sum of  impulses is a 
sum of the responses.  So we just add 
them up.  The answer is still of the form a 
sum of constants times powers of the 
poles.

Generalizing the story (II): To more 
that two poles

• The partial fraction decomposition still 
works (assuming the poles as all distinct).  
So the result is still a sum of powers of the 
poles.  

• The complex poles come in conjugate 
pairs, so they combine to form sinusoids.

• So everything is just like before, except 
there are more terms added in.
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Generalizing the story (III): To 
arbitrary system functions
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We know the form of the response to 
transient signals.  What can we say about

Answer

• Having the numerator there doesn’t 
change the general form of the response 
(although the constants change).

The final result

• For any LTI system, the response to any 
transient signal is a sum of geometric series in 
the poles*

* provided the poles are distinct

• If any pole has magnitude > 1, the system is 
unstable.

• For complex poles, the conjugate pairs combine 
to give components that oscillate with frequency 
determined by the angle of the pole
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Generalizing the story (more)

• When poles not distinct
• To arbitrary inputs
• To signals that originate in the indefinite 

past (audio processing)
• To two dimensional signals (image 

processing)
• To continuous as well as discrete systems
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Robot in corridor
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