Linear time-invariant systems (LTI)

- As block diagrams: Build from adders, (constant) gains, and delays - no other elements
- As difference equations: Linear with constant coefficients

$$
\begin{aligned}
& a_{0} y[n]+a_{1} y[n-1]+\cdots a_{k} y[n-k] \\
& =b_{0} x[n]+b_{1} x[n-1]+\cdots b_{j} x[n-j]
\end{aligned}
$$

- As operator equations: Built from addition, multiplication by constants, and "multiplication" by R

$$
\begin{aligned}
& a_{0} y+a_{1} R y+\cdots a_{k} R^{k} y \\
& =b_{0} x+b_{1} R x+\cdots b_{j} R^{j} x
\end{aligned}
$$

Quiz (review)

\qquad
What is the system function for \qquad
\qquad

\qquad
\qquad
\qquad
\qquad

The big fact

- The operator algebra mirrors the behavior of the system, so we can reason about combining systems by doing algebra.
- This is captured by the idea of a system function

$$
H=\frac{\text { output }}{\text { input }}=\frac{y}{x}=\frac{b_{0}+b_{1} R+\cdots b_{j} R^{j}}{a_{0}+a_{1} R+\cdots a_{k} R^{k}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Theorem

- We can manipulate operator expressions with the rules of ordinary algebra, including multiplication by R.
- If two LTI systems have the same system function, then they have the same input/output behavior
- Provided: All input signals are zero before some initial time

PCAP framework for signals and systems

Primitives	signal
Combination	adder, gain, delay
Abstraction	system function
Patterns	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Quiz

\qquad

What are the poles for
\qquad

$$
\stackrel{\substack{\underbrace{2}}}{\stackrel{\rightharpoonup}{R}} \underset{R}{x}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Partial fraction expansion

\qquad

$$
\begin{aligned}
& \text { Any fraction } \frac{1}{\left(1-p_{1} R\right)\left(1-p_{2} R\right) \cdots\left(1-p_{k} R\right)}
\end{aligned}
$$

\qquad
\qquad
Can be written in the form \qquad $\frac{c_{1}}{\left(1-p_{1} R\right)}+\frac{c_{2}}{\left(1-p_{2} R\right)}+\cdots+\frac{c_{k}}{\left(1-p_{k} R\right)}$ \qquad
Provided the p's are all distinct
Proof by algebra: Clear the fractions and solve for the c's

How to compute the poles

Problem: Find the p's such that
$a_{0}+a_{1} R+a_{2} R^{2}+\cdots+a_{k} R^{k}=A\left(1-p_{1} R\right)\left(1-p_{2} R\right) \cdots\left(1-p_{k} R\right)$
Solution: Substitute $R=1 / z$ to get

$$
a_{0} z^{k}+a_{1} z^{k-1}+a_{2} z^{k-2}+\cdots+a_{k}=A\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{k}\right)
$$

So the p's are the roots of

$$
a_{0} z^{k}+a_{1} z^{k-1}+a_{2} z^{k-2}+\cdots+a_{k}=0
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fibonacci system

$$
\begin{aligned}
& y[n]=y[n-1]+y[n-2]+x[n] \\
& H=\frac{y}{x}=\frac{1}{1-R-R^{2}}
\end{aligned}
$$

Poles of Fibonacci system

$H=\frac{y}{x}=\frac{1}{1-R-R^{2}}$
The poles are the roots of

$$
z^{2}-z-1=0
$$

$\left(p_{1}, p_{2}\right)=\frac{1 \pm \sqrt{5}}{2}$
$p_{1}=1.618 \quad p_{2}=-0.4471$

Formula for the Fibonacci numbers

$$
y[n]=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Take $y[0]=0$ and $y[1]=1$ and solve for $c 1$ and c2:

$$
y[n]=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

This is an integer for all n !

Approximating fib[n]

fib[n]: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
\ggg phi $=(1+$ sqrt (5))/2
\ggg def fibApprox(n):
return phi**n/sqrt(5)
>>> fibApprox (4)
3.0652475842498532
>>> fibApprox (8)
21.009519494249016
>>> fibApprox (10)
55.003636123247432
>>> fibApprox (20)
6765.0000295639356
\qquad
\qquad
\qquad
>>>

Quiz

Find the poles:

$$
\begin{aligned}
& y[n]=y[n-1]-y[n-2]+x[n] \\
& H=\frac{1}{1-R+R^{2}}
\end{aligned}
$$

Complex numbers in polar form

$$
\begin{aligned}
& z=x+y j=M e^{j \theta} \\
& M=\sqrt{x^{2}+y^{2}} \quad \theta=\arctan (y / x) \\
& z^{n}=M^{n} e^{j n \theta}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
y[n] & =(a+b j) M^{n} e^{n j \theta}+(a-b j) M^{n} e^{-n j \theta} \\
& =2 M^{n}(a \cos n \theta+b \sin n \theta)
\end{aligned}
$$

This is an exponential that gows or decays as M^{n}, times a sinusoid of frequency θ

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

$$
\begin{aligned}
& y[n]=y[n-1]-y[n-2]+x[n] \\
& p=0.5 \pm j \frac{\sqrt{3}}{2} \\
& M=1 \quad \theta=60^{\circ}
\end{aligned}
$$

\qquad

$$
y[n]=0.9 y[n-1]-0.7 y[n-2]+x[n]
$$

$$
p=0.45 \pm 0.705 j
$$

$$
M=0.837 \quad \theta=57^{\circ}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Generalizing the story (I): To arbitrary transient inputs

- The response to a sum of impulses is a sum of the responses. So we just add them up. The answer is still of the form a sum of constants times powers of the poles.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Generalizing the story (II): To more that two poles

- The partial fraction decomposition still works (assuming the poles as all distinct). So the result is still a sum of powers of the \qquad poles.
- The complex poles come in conjugate pairs, so they combine to form sinusoids.
- So everything is just like before, except there are more terms added in.

Generalizing the story (III): To

 arbitrary system functionsFor

$$
H=\frac{1}{a_{0}+a_{1} R+\cdots a_{k} R^{k}}
$$

We know the form of the response to transient signals. What can we say about

$$
H=\frac{b_{0}+b_{1} R+\cdots b_{j} R^{j}}{a_{0}+a_{1} R+\cdots a_{k} R^{k}}
$$

Answer

- Having the numerator there doesn't change the general form of the response (although the constants change).

The final result

- For any LTI system, the response to any transient signal is a sum of geometric series in the poles*

$$
c_{1} p_{1}^{n}+c_{2} p_{2}^{n}+\cdots c_{k} p_{k}^{n}
$$

* provided the poles are distinct
- If any pole has magnitude >1, the system is unstable.
- For complex poles, the conjugate pairs combine to give components that oscillate with frequency determined by the angle of the pole

Generalizing the story (more)

- When poles not distinct \qquad
- To arbitrary inputs
- To signals that originate in the indefinite past (audio processing)
- To two dimensional signals (image processing)
- To continuous as well as discrete systems

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Feedback combination \qquad
\qquad

Black's formula

$$
H=\frac{H_{1}}{1+H_{1} H_{2}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

$$
\frac{d}{D_{\text {desired }}}=\frac{H_{\text {control }} H_{\text {robot }}}{1+H_{\text {control }} H_{\text {robot }}}
$$

\qquad
\qquad
\qquad
\qquad

Last week you used $H_{\text {control }}=k$
\qquad
\qquad
\qquad

[^0]: See the course notes for the computation

