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MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.01—Introduction to EECS I
Spring Semester, 2008

Assignment 5, Issued: Tuesday, Mar. 4: Includes revised design lab

Overview of this week’s work

In software lab

• Work through the software lab.

• Paste your solution to Question 7 into the tutor.

Before the start of your design lab on Mar 4 or 5

• Read the class notes and review the lecture handout.

• Do the on-line tutor problems in section PS.6.2.

• Read the entire description of the design lab, so that you will be ready to work on it when
you get to lab.

In design lab

• Take the nanoquiz in the first 15 minutes; don’t be late.

• Work through the design lab with a partner, and take good notes on the results of your work.

At the beginning of your next software lab on Mar 11 or 12

• Submit online tutor problems in section PS.6.3.

• Submit written solutions to questions 7–9, 11, 14–19, and 20. All written work must conform
to the homework guidelines on the web page.

Get the lab5 files via athrun 6.01 update or from the home page.
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Software Lab: System Functions for Robot Controller

We saw in lecture this week that the behavior of a linear time-independent system can be completely
characterized using a ratio of two polynomials in R, the delay operator. We call this characterization
the system function. Further, we saw that systems composed of multiple LTI components can be
described using system functions that are relatively simple compositions of the system functions of
the components. It is possible to solve such problems by hand, with a paper and pencil, but why
do that when we can get a computer to do the work for us?!

In this software lab and the next we will build and use a set of tools for analyzing, simulating, and
combining system functions. The file SystemFunctionSkeleton.py contains the definition of the
class SystemFunction, with some methods filled in, and others just documented, but with pass
instead of the method body. We’ll fill in its methods this week and next. We’ll also give you
SystemFunction.pyc, which is a complete compiled version of that module.

Making System Functions

The module SystemFunction contains a function that constructs a new instance of the SystemFunction
class, given a characterization of that system function as a difference equation. Assume that the
difference equation has the form

a0y[n] + a1y[n− 1] + ...+ aky[n− k] = b0x[n] + b1x[n− 1] + ...+ bjx[n− j] ,

where X is the input signal and Y is the output signal. It is crucial that the first coefficient of both
polynomials be from the same time step; but they can go back different depths in history.

To make a new system function, say corresponding to the difference equation

9y[n] − 4y[n− 1] + 5y[n− 3] = 2x[n− 1] ,

we’d make the call
> sf = systemFunctionFromDifferenceEquation ([9, -4, 5], [0, 2])

You can see from printing out the system function, that we store it as a ratio of polynomials in R:
> sf

SF (2.000R/5.000 R**2 + -4.000R + 9.000)

Question 1: Describe in English what this system does:

systemFunctionFromDifferenceEquation ([1], [0, 0, 1])

Question 2: What call would you make to generate the system function for a system with this
difference equation:

y[n] = 2y[n− 2] + 3x[n− 3] ?

Understanding a system

A crucial thing to understand about a system is whether, even in the absence of input, its output
will go to zero, or whether it will grow unboundedly. We can find this out by determining the poles
of the system. So, for example, if you ask for the poles of a system function, you’ll get a report on
the poles of the system and their implications for the stability of the system:
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> sf = systemFunctionFromDifferenceEquation ([9, -4, 5], [0, 2])

> sf.poles ()

Magnitude of poles: [0.7453559924999299 , 0.7453559924999299]

[(0.22222222222222227+0.71145824860364981j),

(0.22222222222222218 -0.71145824860364981j)]

> sf2 = systemFunctionFromDifferenceEquation ([3, -4, 5], [0, 2])

> sf.poles ()

Magnitude of poles: [1.2909944487358056 , 1.2909944487358056]

Danger. Warning. Unstable system.

[(0.66666666666666663+1.1055415967851332j),

(0.66666666666666663 -1.1055415967851332j)]

Another way to get an understanding of how a system is working is to start it at some initial
conditions, and simulate it by running the associated difference equation forward. We have built
facilities for doing this into the SystemFunction class.

Let k be the order of the polynomial on the Y terms (also called the order of the system) and j
be the order of the polynomial on the X terms. We need j initial input values and k initial output
values in order to be able to specify all future values of the system. In addition, we need to provide
an input sequence; for generality, instead of providing a list, we use a function from n to x[n].

So, given initial values (the lists [x[0], . . . , x[j− 1]] and [y[0], . . . , y[k− 1]]) and an input source, the
SystemFunction.plotSequence method plots the sequence of Y values.

So, for example, you can do

> sf2 = systemFunctionFromDifferenceEquation ([3, -4, 5], [0, 2])

> sf2.plotSequence ([1], [0, 1], lambda x: 1, n = 30, idle = True)

and get the plot shown in figure 1. The last two arguments are optional. n controls the number of
points that are plotted; idle controls whether the plotting will work nicely with Idle. If you call
this with idle set to True, then you will have to close the plotting window before your program that
called this method (or the Python shell) can continue to run.

Question 3: Experiment with plots of sf2 above with different initial conditions and inputs.

Robot meets wall

Now, let’s return to the problem of the robot driving up to the wall. We would like to determine
whether this system is stable. Doing so will require several steps, laid out in the questions below.

Question 4: Imagine a robot driving straight toward a wall. We would like to use a difference
equation to model this system, where the output, D, is the distance from the robot to the
wall in meters, and the input, V is the robot’s current forward velocity in meters per second.
Assume that each state transition corresponds to the passage of 0.2 seconds, and that D at
time t depends on V at time t − 1. Write a difference equation to model this system. (Do
this on paper).
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Figure 1: Behavior of system function sf2.

Question 5: Now, let’s think of the controller that this robot might be executing. Assume the
robot would like to stop at some distance dDesired from the wall. The controller can be
modeled as a difference equation where the output, V is the robot’s selected velocity, and
the input D is its current measured distance from the wall. Assume that V at time t depends
on D at time t − 1. For now, assume there’s no inertia involved, and so the controller can
choose any new velocity it wants, independent of its previous velocity. In particular, let’s
assume it selects a new velocity that is equal to k(d − dDesired ), where d is the current
distance to the wall, dDesired is the desired distance to the wall, and k is a “gain” constant.
Write a difference equation to model this controller. You can treat dDesired as another input
signal. (Do this on paper)

Question 6: Observing that the sequences D and V in these two systems are actually the same,
we’d like to understand how the whole system behaves. The first step is to take the two
equations that you developed in the previous two problems, and convert them into a single
equation that only involves values of D. The new equation will define d[t] in terms of d[t−1],
d[t − 2], and dDesired . (Do this on paper, by converting to operator equations with the R
operator, and then combining).

Question 7: Write a function that takes a value for the gain k as input, and returns an instance
of the SystemFunction class corresponding to the difference equation you derived in the
previous problem. Pick a value of k, and find out what the poles of the corresponding
system are.

Question 8: Write a simple Python program that computes the poles of the system for a wide
range of k. Find the range of values of k for which the system will be stable.

Question 9: Find 4 different values of k, that satisfy the following conditions: 1. converges
monotonically; 2. converges in oscillation; 3. diverges monotonically; 4. diverges in oscilla-
tion. Using the plotSequence method of SystemFunction, plot sequences of D for systems
with each of those values of k. (Note that the inputSource argument to plotSequence is
a function from n to x[n]; we assumed above that the input was dDesired , so you can use
lambda x: dDesired for that argument.) Discuss the relationship between the predictions
based on the poles of the system for different k, and the observed behavior sequences.
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Run it in SoaR

Now, you can do the demo we did in class on the first day. For now, we’ll just do it in simulation,
though feel free to get out a robot and try it, as well. The file wallControllerSkeleton.py
contains code for a very simple brain to control the robot. It computes the distance to the wall
using the sonars, and only needs for you to decide what velocity commands to make.

Question 10: Put in your control rule and see how the robot behaves. Does its behavior match
the predicted behavior of the model?

Question 11: If you set the variable makeGraph to True, then after runLength steps, a graph of
the distance values will be printed out. Compare those to the graphs you got in the previous
section for the same gain. How do they relate?

Exploration: Symbolic Algebra

This is worth 5 out of 10 points for the Week 5 exploration.

When we solve problems like trying to find a good gain for a system, we typically do it algebraically,
leaving k as a variable, working out the answer, and then inferring values of k that have some
desirable property. In this exploration, we’ll ask you to construct a set of classes for symbols and
algebraic expressions, together with overloadings of the usual Python arithmetic operators, so that
it will support an interaction like this:
>>> p1 = Polynomial ([S(’a’), S(’b’), 7, S(’c’)])

>>> p2 = Polynomial ([2, S(’a’)])

>>> p1 + p2

a z**3 + b z**2 + 9.000z + (a + c)

>>> p1 * p2

(2.0 * a) z**4 + ((a * a) + (2.0 * b)) z**3 +

((a * b) + 14.0) z**2 + ((7.0 * a) + (2.0 * c))z + (a * c)

>>> sf1 = systemFunctionFromDifferenceEquation ([1, -1, S(’k’)], [S(’k’)])

>>> sf1

SF(k/k R**2 + -1.000R + 1.000)

>>> sf2 = systemFunctionFromDifferenceEquation ([1, S(’k’), -3], [1, S(’k’)])

>>> sf2

SF(kR + 1.000/ -3.000 R**2 + kR + 1.000)

>>> sf1.cascade(sf2)

SF((k * k)R + k /

(-3.0 * k) R**4 + ((k * k) + 3.0) R**3 + (k + (-1.0 * k) + -3.0) R**2

+ (-1.0 + k)R + 1.000)

We generated that listing without changing anything about the Polynomial or SystemFunction
classes, relying entirely on Python’s operator overloading.

You can approach this problem any way you’d like (though you shouldn’t need or want to touch
those classes), but ultimately, it should allow you to do basic arithmetic operations with mixed
symbolic and numeric expressions. When we use the phrase “symbolic expressions”, we don’t mean
just primitive symbols like S(’a’), but also expressions involving them, like S(’a’) * S(’b’).
Your operations should be compositional, so that you can make ever more complicated expressions.
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Exploration 1: Demonstrate that you can create and print (nicely) symbolic expressions.

Exploration 2: Show that you can add symbolic expressions.

Exploration 3: Show that you can subtract symbolic expressions.

Exploration 4: Show that you can multiply symbolic expressions.

Exploration 5: Show that you can divide symbolic expressions.

Ideally, you’ll do some basic simplification (e.g., noticing that 0 ∗ a is 0, and maybe even simple
gathering of terms, so that a+ a is 2 ∗ a), but doing a really good simplifier is quite difficult, and
not necessary for this exploration.

If you want to go a bit above and beyond, supply a val method that takes a dictionary that maps
strings to values, and evaluates an expression. So, for example, you’d get

>>> (S(’a’) + S(’b’)). val({’a’:4, ’b’:7})

11

If you want to go way above and beyond, push the symbols through the quadratic root computation,
and find algebraic expressions for the bounds of the region where the system is stable.

Below, we outline the approach we took to this problem. You are welcome to approach it the same
way, or in some other way.

# Generic superclass. Nothing is generically an AlgExp , but we put

# the operators here. You can put a lot of simplification here , as

well.

class AlgExp:

def __add__(a, b):

if isNumber(b):

return a + N(b)

return Sum(a, b)

# Called when a + b, b isn’t an algexp , but b is

def __radd__(b, a):

return N(a) + b

def __mul__(a, b):

if isNumber(b):

return a * N(b)

return Prod(a, b)

def __rmul__(b, a):

return N(a) * b

def __div__(a, b):

if isNumber(b):

return a / N(b)

return Frac(a, b)

def __rdiv__(b, a):

return N(a) / b

def __neg__(a):

return Neg(a)

def __sub__(a, b):
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if isNumber(b):

return a - N(b)

return a + Neg(b)

def __rsub__(b, a):

return N(a) - b

def __str__(self):

return repr(self)

# Negation of an expression

class Neg(AlgExp ):

# your code here

pass

# Sum of two expressions

class Sum(AlgExp ):

# your code here

pass

# Product of two expressions

class Prod(AlgExp ):

# your code here

pass

# Quotient of two expressions

class Frac(AlgExp ):

# your code here

pass

# A number

class N(AlgExp ):

# your code here

pass

# A symbol

class S(AlgExp ):

# your code here

pass

def isNumber(x):

return isinstance(x, int) or isinstance(x, float)
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Figure 2: Robot in corridor.

Design Lab: Driving down a hall

Up to this point in the course, you have developed progressively more intelligent approaches to
controlling the robot’s actions based on sensory measurements. In those labs, the primary goal
was to develop systematic ways of organizing software for construction complex systems of robot
behaviors.

In this lab, you will be using measurements to control the robot in a feedback system, and will
be investigating a situation in which detailed analysis is needed to achieve a desired performance.
More specifically, we are asking you to investigate how to control the robot so that it drives down
the center of a narrow corridor at a constant forward velocity. Such a task is similar to what an
automobile driver does when keeping a car on the road. We will suggest a simple feedback scheme
to keep the robot in the center of corridor, and ask you to develop and analyze a mathematical
model based on difference equations that explains the behavior of the suggested simple feedback
system.

In this lab you will be controlling the robot to drive down a narrow corridor as shown in Figure 2.1

Notice that in the figure, we have denoted the direction of the robot’s forward motion, the distance
to the left wall, dleft, the distance to the right wall, dright, and the angle of the robot with respect
to the parallel walls, θ.

Consider the problem of trying to steer the robot down the center of the corridor while keeping the
robot moving forward with a constant velocity. For example, if the robot is in the center of the
corridor and pointing in a direction parallel to the walls, one could keep the robot moving forward
down the center of the corridor with the command

motorOutput (0.1, 0.0)

which will keep the robot moving forward 0.1 meters per second. If the robot is too close to the
right wall, one could issue the command

motorOutput (0.1, 0.2)

which will keep the robot moving 0.1 meters per second but will cause the robot to rotate to the
left (increasing θ). If the robot is too close to the left wall, one could issue the command

motorOutput (0.1, -0.2)

1The optical sensing strategy and software used in this lab was developed by Karim Liman-Tinguiri, a former 6.01
student.
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which will keep the robot moving forward at 0.1 meters per second but will cause the robot to
rotate to the right.

The above observations suggest a very simple feedback system that keeps the robot moving forward
at 0.1 meters per second and tries to keep the robot in the center of the corridor. One could set
the forward velocity in the motorOutput command to 0.1 and set the rate of rotation in the
motorOutput command to be proportional to the distance from the center of the corridor.

Measuring Distances

In previous labs, you measured distances to objects using the robot’s built-in sonars. For this lab,
we have added optical range sensors to the robots; these sensors are somewhat less noisy than sonars
(especially when looking at surfaces that aren’t covered in bubble wrap), and they can generate
readings with less lag (light is faster than sound).

You will be using a set of four optical sensors mounted in a diamond configuration on the top of
the robot (near the robot’s center of rotation). There are four sensors so that triangulation can be
used to determine the shortest distance from the robot center to each of the corridor walls, even if
the robot is pointed in a direction that is not perfectly parallel to the wall.

The four optical sensors encode distance information as analog voltages, and these analog voltages
are converted to digital numbers that are transmitted to your laptop via a USB connection. A
National Instruments digital-to-analog converter (NIDAQ) (the white box on top of the robot)
performs the conversion, and the NIDAQ is managed by running a server program on your laptop.
This server program makes the converted analog voltage data available to Python programs.

In order to use the optical sensors, you must turn on the power to the robot, then open
a terminal window and change to the lab5 directory. Then make sure the USB cable from the
NIDAQ is plugged into the USB port of your laptop (if so, the green light on the NIDAQ will blink
a few times, and then quit). In the terminal window, type

./ NIDAQserver

After a few seconds (possibly even a minute), the terminal screen will start filling with numbers.
You may minimize this terminal window, but do NOT kill the window. If it prints an error
message, but starts to spew numbers, everything is fine; don’t worry about the error message. If it
can’t connect, check to be sure your USB cable is plugged into the laptop correctly.

Start soar, and then start the virtual oscilloscope program by clicking on the cool new oscilloscope
icon on the far right of the icon bar.

An oscilloscope window should appear on your laptop screen, and the first four channels (Ai0
through AI3) from the NIDAQ should be plotted in the oscilloscope window. Try blocking one of
the optical sensors and notice what happens in the oscilloscope window. The blue line is the front
left sensor reading, red line is the rear left, magenta line is the rear right, and the green line is the
front right. If the oscilloscope does not seem to be working (or if you’ve unplugged the NIDAQ
box or turned off the robot), close the oscilloscope window, unplug the NIDAQ USB connection,
wait three seconds, replug the USB connection and restart the server (you might need to type
Control-C in the window where it was running before you can restart it) and hit the oscilloscope
button. Please ensure that all four distance sensors are functional by waving an object in front
of each of them in turn. You should observe a spike in voltage readings for that channel. In case
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you’re interested, the figure in the original handout contains a plot of the nominal voltage readings
for these sensors, as a function of distance to an obstacle.

Now, connect your laptop to a robot with a serial cable (both the USB cable to the NIDAQ and
the serial cable to the robot are needed for this lab).

PLEASE NOTE: It is very easy to accidentally block one of the optical sensors with either of
the two cables connecting the robot and the NIDAQ to the laptop. Typically, a single sensor will
be blocked, and then very odd things happen. This problem is best avoided by carrying the laptop
behind the robot and making sure the cables do not cross the line of sight of the optical sensors.

Now, open the SoaR brain in feedbackBrain.py. We have provided a function GetLR, which
returns the distances from the center of the optical sensor mount to the left and right walls, under
the assumption that both of the optical sensors on a given side of the robot are “seeing” the same
straight wall. Converting the voltages from the sensors to distances requires the use of the function
plotted in the original handout, followed by some geometric calculations to recover the shortest
distance between wall and robot from two distance readings on a given side of the robot. Writing
such a conversion procedure is an interesting problem, but we have provided a program that returns
the needed distances, in the interest of time.

You can test your robot’s sensors further by changing all the velocities in the motor commands to
0, and printing out the left and right sensor readings. Now, put the robot in a hallway. Move it
(by picking it up) from side to side and be sure the readings remain reasonable. Rotate the robot.
Be sure you understand why the sensor readings do what they do.

Checkpoint: 30 minutes

• Demonstrate that your sensors are working; explain the way that they do or do not
change when you displace your robot sideways or rotate it within a hallway.

Trying the robot control system

We’re going to design a controller that sets the rotational velocity to be proportional to the robot’s
signed distance from the corridor center. The definition of the distance from the corridor center
must be thought about carefully. It will turn out that it is convenient to measure the distance of
the robot to the left of the center line.

Question 12: Determine the formula for d, the distance to the left of center, in terms of the
distances to the right and left walls (which is what the robot senses), and be sure your
formula works when the robot is against the left wall or up against the right wall.

Now, we’d like the robot to travel straight down the corridor, some distance dDesired to the left of
center. Change the program in feedbackBrain.py so that the rotational velocity is proportional
to the difference between the robot’s actual distance d from the corridor center and dDesired . Try
your brain on your robot in one of the narrow corridors we have set up in the lab. Experiment
with different gains in your feedback system, and try starting the robot both near and far from the
center of the corridor. You can just let dDesired be 0 for now, so the robot tries to go right down
the middle.
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Question 13: Include the code for your brain. What is the effect on robot behavior of changing
the feedback gain and the initial position? Try several gains and several initial positions
and angles for the robot and describe the results.

Checkpoint: 90 minutes

• Demonstrate your robot moving in the corridor with several gains and initial positions.

Difference Equation Derivation

When soar is running your brain, it executes the step function about 5 times per second. If you
wrote your brain correctly, this means that 5 times every second, your brain is taking sensor readings
to determine the offset from center, and then updating the robot’s rate of rotation. Now, our job
is to develop a set of difference equations that describe the way the robot interacts with the world.
Ultimately, we’d like to develop a single difference equation that describes a system with dDesired

as the input and d as the output. But we’ll do it in pieces.

First, let’s think about how d (the distance to the left of center) depends on θ. The robot is
displaced to the left of the center by an amount d[n], and is moving with a speed V in a direction
that makes an angle θ[n] as shown in Figure 2. So

d[n] = d[n− 1] + VδT sin θ[n− 1]

≈ d[n− 1] + VδTθ[n− 1]

where the approximation holds if the angle θ[n− 1] is small.

Now, we’ll ask you to write down difference equations to describe the rest of the system. We found
it convenient to break it down into two parts.

• Let Ω[n] be the robot’s rotational velocity at time n. Start by writing a difference equation
that describes how θ depends on Ω (this is much like the dependence of between d and v in the
example we did in software lab).

• Now, we have to relate Ω to d and dDesired . This is exactly what your brain does. You can
assume that the relationship between the sensor values and the rotational velocity command is
instantaneous. (This assumption is different from the one we made in software lab.)

• Finally, combine these three difference equations (by converting them into operator equations
and doing algebra) into a single difference equation relating d to dDesired .

You’ll need to switch to using the SystemFunction software in IDLE, rather than playing with the
robot in soar. See the reference section at the end of this handout for some instructions on how to
use it smoothly.
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Question 14: Show your individual difference equations from above and the derivation of the
difference equation for d[n].

Question 15: Think about whether K should be positive or negative: Which way makes the
robot turn in the correct direction in response to a deviation from the center of the corridor?
Write a simple Python program that computes the poles of the system for a range of k with
the correct sign. (Note that the Python range function always increments by integers; a
while loop works best for this).

Question 16: What does your answer to the above question tell you about the solution to the
difference equation model of the robot feedback system?

Question 17: Show plots of the difference equation output sequence for different feedback gains
and a nonzero initial offset from the corridor center. Relate what you see in your plots to
the poles you found in question 15.

Question 18: What does the model tell you about your ability to find a feedback gain for which
the robot will not eventually hit the wall of the corridor?

Checkpoint: 2 hours and 30 minutes

• Show your difference equation model for the robot displacement from center to an
LA.

• Describe your answers to the above questions to an LA.

Validating your model

Question 19: Determine and execute experiments to validate your difference equation model.
That is, show that your model predicts the actual robot’s behavior. What does the model
predict about how the robot will behave as you change the feedback gain? Is the model
accurate?

There are a number of constants to determine, and units must be verified as consistent. Do the
optical sensors return distances in meters? Does the motorOutput command set the forward velocity
in meters per second and set the rotational velocity in radians per second? What is the sample
rate of your feedback system?

To gather data from your robot, be sure that the variable makeGraph in feedbackBrain.py is set
to True. It will store the left distance values, and after a fixed number of steps (currently set to
be 100, but you can change it by changing the value of runLength), it will write the values out to
a file called leftValues.py, and draw a graph of the series.

If you want to read the values in from the file (for example, to plot them on the same axes as
another graph), then you can use the following commands in idle:
import pickle

f = open("foo.py", "r")

data = pickle.load(f)

f.close()
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Checkpoint: end of lab

• Show data from actual robot run and the model using the same controller and gains.

Troubleshooting

• Bad magic number means you have an old version of Python. On athena, do add -f 6.01.
• Virtual oscilloscope is slow: Be sure you have the latest version of Python.
• All the optical sensors move together. Maybe robot is not turned on, or there’s a loose power

wire.
• When you start the NIDAQ server, it generates an error, but it’s okay to ignore.

Using SystemFunction software

• Make a new file, called ps5work.py in the lab5 directory, and put this line at the top:

from SystemFunction import *

Now, run this file in idle. At this point, you can type expressions like

> sf = systemFunctionFromDifferenceEquation ([9, -4, 5], [0, 2])

at the Python terminal.

• Consider the difference equation

y[n] = y[n− 1] + y[n− 2] + x[n] + x[n− 1] .

When we want to plot, or to compute the value at a particular point in the sequence, we
need to know some previous values. In order to get this process started, we have to provide
initial conditions. In this example, to compute y[0], we need to know y[−1], y[−2], and x[−1].
We’re assuming that the input source x[n] is available starting at n = 0. Imagine that sf6 is
the name of the system function above. Then, to make a plot of its values, with y[−1] = 10,
y[−2] = 20, x[−1] = 100, and x[n] = n + 1 for n greater than or equal to 0, you’d need to
make a call

> sf6.plotSequence ([100] , [20, 10], lambda n: n + 1)

Post-lab Homework: systems and stability

A crucial thing to understand about a system is whether, even in the absence of input, its output
will go to zero, or whether it will grow unboundedly. We can find this out by determining the poles
of the system. If the polynomial in the denominator of the system function has the form

a0 + a1R+ a2R
2 + ...+ akR

k ,

then the poles are the roots of the equation

a0 + a1
1

z
+ a2

1

z

2

+ ...+ ak
1

z

k

= 0 .
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Multiplying through by zk, we find that we are interested in the roots of the equation

a0z
k + a1z

k−1 + a2z
k−2 + ...+ ak = 0 .

The polynomial can be constructed from the one in R simply by constructing a new polynomial
with a reversed coefficient list (remember that the first element in the list of coefficients to the
Polynomial initializer is the coefficient of the variable raised to the highest power.)

Now, the roots of this polynomial may be either real or complex. What matters most, in the
question of stability, is whether their magnitude is greater or less than one. If the magnitude of any
root is greater than 1, then the system is unstable. You can compute the magnitude of a complex
number, x using abs(x).

Question 20: Fill in the body of the SystemFunction.poles method in the file
SystemFunctionSkeleton.py. It should do the following things:

• Return the roots of the polynomial, as long as the polynomial is first, second, or third
order.

• Print out the magnitudes of the poles

• Print a warning if the system is unstable

Concepts covered in this lab

• Difference equations as models of input/output systems.

• Derivation of difference equation models of coupled systems from difference equation models
of their components.

• Relationship between behavior of the system and the poles of the system function.
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Exploration: Buying Toothbrushes

This is worth 5 out of 10 points for the Week 5 exploration.

As the owner of a local convenience store, you must not only sell products to your customers, you
must also purchase products to fill your shelves. Being a graduate of EECS, you decide to automate
the latter task. To limit the number of purchases that you make, you decide to place orders just
once a week: on Mondays at 9am. Such orders are filled within two weeks, so that by Monday at
9am you can add to your shelves the products that were ordered two weeks ago.

The point of this exploration is to analyze the performance of several different algorithms for placing
orders. Let y[n] represent the “excess inventory” at the beginning of the nth week. The excess
inventory is the number of toothbrushes on your shelves minus the number that you believe is
optimum. (If your inventory is currently 90 and your target is 100, then the excess is −10.) Let
x[n] represent the number of toothbrushes sold during the previous week.

•Algorithm 1: Each Monday, place a new order for x[n] toothbrushes.
•Algorithm 2: Each Monday, place a new order for x[n] − y[n] toothbrushes.
•Algorithm 3: Each Monday, place a new order for x[n] − ky[n] toothbrushes.

Exploration 6: Analyze each of these algorithms as follows.

Exploration 7: Draw a block diagram of the transformation from x[n] to y[n].

Exploration 8: Determine the system functional and poles (if any) for each of the block dia-
grams.

Exploration 9: Characterize the temporal behavior of these algorithms by calculating their step
responses, as follows. Assume that on your first day of business (which is a Monday), your
excess inventory is zero. Make a plot of your excess inventory as a function of n, assuming
that customers buy 10 toothbrushes each week.

Exploration 10: Identify the primary weakness of algorithm 1.

Exploration 11: Explain how algorithm 2 addresses the primary weakness of algorithm 1.

Exploration 12: What is the primary weakness of algorithm 2?

Exploration 13: For algorithm 3, determine an “optimal” value of k, and explain the sense in
which your choice of k is optimal.

Exploration 14: Does algorithm 3 address the primary weakness of algorithm 2?

Exploration 15: How is algorithm 3 better/worse than algorithm 1?


