

Big themes of 6.01

1. Controlling complexity - abstraction and
\qquad modularity
2. Interacting with physical systems models
3. Coping with error and incomplete information

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
y[n] & =x[n-1] \\
y & =R x
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\boldsymbol{R} is called the delay operator
6.01 lecture notes

10

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Three representations

Block diagram: good for understanding signal flow

Difference equation: good for computing numerical outputs to given numerical inputs

$$
y[n]=1.002 y[n-1]+x[n]
$$

Operator equation: good for doing algebraic manipulation and analysis

$$
y=1.002 R y+x
$$

Linear time-invariant systems (LTI)

- As block diagrams: Build from adders, (constant) gains, and delays
- As difference equations: Linear with constant coefficients

$$
\begin{aligned}
& a_{0} y[n]+a_{1} y[n-1]+\cdots a_{k} y[n-k] \\
& =b_{0} x[n]+b_{1} x[n-1]+\cdots b_{j} x[n-j]
\end{aligned}
$$

- As operator equations: Built from addition, multiplication by constants, and "multiplication" by R

$$
a_{0} y+a_{1} R y+\cdots a_{k} R^{k} y
$$

$=b_{0} x+b_{1} R x+\cdots b_{j} R^{j} x$
March 4, 2008
6.01 lecture notes

Quiz

- Write the operator equation corresponding to the following difference equation
$3 y[n]+4 y[n-1]-7 y[n-2]=10 x[n]+6 x[n-2]+8 x[n-3]$

Quiz
- Write the operator equation corresponding
to the following difference equation
$3 y[n]+4 y[n-1]-7 y[n-2]=10 x[n]+6 x[n-2]+8 x[n-3]$
Mach4, 2008

\qquad

Quiz

- Write the operator equation corresponding to the Fibonacci equation

$$
y[n]=y[n-1]+y[n-2]=x[n]
$$

\qquad
\qquad
\qquad
\qquad
\qquad

The big fact

\qquad

- The operator algebra mirrors the behavior of the \qquad system, so we can reason about combining systems by doing algebra. \qquad
- This is captured by the idea of a system function

$$
H=\frac{y}{x}
$$

- This is, the system can be represented by the ratio of output y to input x as expressed by the operator equation.

PCAP framework for signals and systems

Primitives	signal
Combination	adder, gain, delay
Abstraction	system function
Patterns	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The general picture: explanation next week

- The system function can be written in the form \qquad
\qquad
- The p's are the poles
- The poles are in general complex numbers
- The positions of the poles in the complex plane determine the stability and oscillation of the system's \qquad response
\qquad
\qquad
\qquad
\qquad

