

Big themes of 6.01

1. Controlling complexity – abstraction and modularity

6.01 lecture notes

- 2. Interacting with physical systems models
- 3. Coping with error and incomplete information

March 4, 2008

PCAP framework for Python			
Procedures	Data		
+, *, ==	numbers, strings		
if, f(g(x))	lists, objects		
def	ADTs, classes		
higher-order fns	polymorphism, inheritance		
	Procedures +, *, == if, f(g(x)) def higher-order fns		

 As operator equations: Built from addition, multiplication by constants, and "multiplication" by R

14

 $a_0 y + a_1 R y + \dots + a_k R^k y$ = $b_0 x + b_1 R x + \dots + b_j R^j x$ 6.01 lecture notes

March 4, 2008

Quiz

Write the operator equation corresponding to the Fibonacci equation

y[n] = y[n-1] + y[n-2] = x[n]

6

PCAP framework for signals and systems			
	Primitives	signal	
	Combination	adder, gain, delay	
	Abstraction	system function	
	Patterns		
March 4	, 2008	6.01 lecture notes	19

The general picture: explanation next week • The system function can be written in the form polynomial in *R*

$$\frac{1}{(1-p_1R)(1-p_2R)\cdots(1-p_kR)}$$

- · The p's are the poles
- The poles are in general *complex numbers*
- The positions of the poles in the complex plane determine the stability and oscillation of the system's response

March 4, 2008

6.01 lecture notes

23