
6.01, Spring Semester, 2008—Course notes for Week 4 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.01—Introduction to EECS I
Spring Semester, 2008

Course notes for Week 4

1 State, objects, and abstraction

Last week we introduced object-oriented programming, motivating classes because they provide a
convenient way of organizing the procedures and data associated with an abstract data type. This
week, we’ll look at some other important abstractions strategies for computer programs and see
how OOP can help us with them, as well.

In the context of our table and the PCAP framework, we will pay special attention to generic
functions and inheritance in OOP, which give us methods for capturing common patterns in data
(and the procedures that operate on that data).

Procedures Data
Primitives +, *, == numbers, strings
Means of combination if, while, f(g(x)) lists, dictionaries, objects
Means of abstraction def abstract data types, classes
Means of capturing common patterns higher-order procedures generic functions, inheritance

1.1 Objects and state

We saw, last week, how to define a convenient bank-account object that implements an ADT for a
bank account.

class Account:
def __init__(self , initialBalance):

self.currentBalance = initialBalance
def balance(self):

return self.currentBalance
def deposit(self , amount):

self.currentBalance = self.currentBalance + amount
def creditLimit(self):

return min(self.currentBalance * 0.5, 10000000)

We can use this ADT to create and manage several bank accounts at once:

>>> a = Account (100)
>>> b = Account (1000000)

>>> Account.balance(a)
100
>>> a.balance ()
100
>>> Account.deposit(a, 100)
>>> a.deposit (100)

6.01, Spring Semester, 2008—Course notes for Week 4 2

>>> a.balance ()
300
>>> b.balance ()
1000000
>>> a.balance ()
300

The Account class contains the procedures that are common to all bank accounts; the individual
objects contain state in the values associated with the names in their environments. That state is
persistent, in the sense that it exists for the lifetime of the program that is running, and doesn’t
disappear when a particular method call is over.

1.2 Generic functions

Now, imagine that the bank we’re running is getting bigger, and we want to have several different
kinds of accounts. Now there is a monthly fee just to have the account, and the credit limit depends
on the account type. Let’s see how it would work to use dictionaries to store the data for our bank
accounts. Here’s a new data structure and two constructors for the different kinds of accounts.

def makePremierAccount(balance , rate , owner , ssn):
return {"balance": balance ,

"interestRate": rate ,
"owner": owner ,
"ssn": ssn ,
"type": "Premier"}

def makeEconomyAccount(balance , rate , owner , ssn):
return {"balance": balance ,

"interestRate": rate ,
"owner": owner ,
"ssn": ssn ,
"type": "Economy"}

a5 = makePremierAccount (3021835.97 , .0003, "Susan Squeeze", "558421212")
a6 = makeEconomyAccount (3.22, .00000001 , "Carl Constrictor", "555121348")

The procedures for depositing and getting the balance would be the same for both kinds of accounts.
But how would we get the credit limit? We could have separate procedures for getting the credit
limit for each different kind of account:

def creditLimitEconomy(account):
return min(account[’balance ’]*0.5, 20.00)

def creditLimitPremier(account):
return min(account[’balance ’]*1.5, 10000000)

>>> creditLimitPremier(a5)
4532753.9550000001
>>> creditLimitEconomy(a6)
1.6100000000000001

But doing this means that, no matter what you’re doing with this account, you have to be conscious
of what kind of account it is. It would be nicer if we could treat the account generically. We can,

6.01, Spring Semester, 2008—Course notes for Week 4 3

by writing one procedure that does different things depending on the account type. This is called
a generic function.

def creditLimit(account):
if account["type"] == "Economy":

return min(balance *0.5, 20.00)
elif account["type"] == "Premier":

return min(balance *1.5, 10000000)
else:

return min(balance *0.5, 10000000)

>>> creditLimit(a5)
4532753.9550000001
>>> creditLimit(a6)
1.6100000000000001

In this example, we had to do what is known as type dispatching; that is, we had to explicitly check
the type of the account being passed in and then do the appropriate operation. We’ll see later in
this lecture that Python has the ability to do this for us automatically.

1.3 Classes and inheritance

If we wanted to define another type of account as a Python class, we could do it this way:

class PremierAccount:
def __init__(self , initialBalance):

self.currentBalance = initialBalance
def balance(self):

return self.currentBalance
def deposit(self , amount):

self.currentBalance = self.currentBalance + amount
def creditLimit(self):

return min(self.currentBalance * 1.5, 10000000)
>>> c = PremierAccount (1000)
>>> c.creditLimit ()
1500.0

This will let people with premier accounts have larger credit limits. And, the nice thing is that we
can ask for its credit limit without knowing what kind of an account it is, so we see that objects
support generic functions, as we spoke about them earlier.

However, this solution is still not satisfactory. In order to make a premier account, we had to repeat
a lot of the same definitions as we had in the basic account class. That violates our fundamental
principle of laziness: never do twice what you could do once; instead, abstract and reuse.

Inheritance lets us make a new class that’s like an old class, but with some parts overridden or new
parts added. When defining a class, you can actually specify an argument, which is another class.
You are saying that this new class should be exactly like the parent class or superclass, but with
certain definitions added or overridden. So, for example, we can say

class PremierAccount(Account):
def creditLimit(self):

return min(self.currentBalance * 1.5, 10000000)

6.01, Spring Semester, 2008—Course notes for Week 4 4

class EconomyAccount(Account):
def creditLimit(self):

return min(self.currentBalance *0.5, 20.00)

>>> a = Account (100)
>>> b = PremierAccount (100)
>>> c = EconomyAccount (100)
>>> a.creditLimit ()
100.0
>>> b.creditLimit ()
150.0
>>> c.creditLimit ()
20.0

This is like generic functions! But we don’t have to define the whole thing at once. We can add
pieces and parts as we define new types of accounts. And we automatically inherit the methods of
our superclass (including init). So we still know how to make deposits into a premier account:

>>> b.deposit (100)
>>> b.balance ()
200

This is actually implemented by setting the subclass’s enclosing environment to be the superclass’s
environment. Figure 1 shows the environments after we’ve executed all of the account-related
statements above. You can see that each class and each instance is an environment, and that
superclasses enclose subclasses and classes enclose their instances. So, as a consequence of the rules
for looking up names in environments, when we ask a PremierAccount instance for its creditLimit
method, it is found in the enclosing class environment; but when we look for the deposit method,
it is found in the superclass’s environment. Once we know how the environment structure is set
up, the details of the look-up process are the ones we know from the rest of Python.

The fact that objects know what class they were derived from allows us to ask each object to do the
operations appropriate to it, without having to take specific notice of what class it is. Procedures
that can operate on objects of different types or classes without explicitly taking their types or
classes into account are called polymorphic. Polymorphism is a very powerful method for capturing
common patterns.

There is a lot more to learn and understand about object-oriented programming; we have just
seen the bare basics. But here’s a summary of how the object-oriented features of Python help us
achieve useful software-engineering mechanisms.

1. Data structure: Objects contain a dictionary mapping attribute names to values.

2. Abstract data types: Methods provide abstraction of implementation details.

3. State: Object attributes are persistent.

4. Generic functions: Method names are looked up in object’s environment

5. Inheritance: Can easily make new related classes, with added or overridden attributes.

6.01, Spring Semester, 2008—Course notes for Week 4 5

<method>
<method>

<method>

<method>creditLimit
deposit
balance
__init__

<EconomyAccount instance>c

<PremierAccount instance>b

a <Account instance>
EconomyAccount <EconomyAccount class>

<PremierAccount class>

<Account class>

PremierAccount

Account

global

<method>creditLimit

<method>creditLimit

100currentBalance

200currentBalance

100currentBalance

Figure 1: The Account class, two subclasses, and three instances. Dashed arrows show the envi-
ronments associated with instances and classes. Solid arrows show enclosing environments.

2 Combination and abstraction of state machines

Last week, we studied the definition of a primitive state machine, and saw a number of examples.
State machines are useful for a wide variety of problems, but specifying them using state transition
tables or even more general functions ends up being quite tedious. Ultimately, we’ll want to
build large state-machine descriptions compositionally: by specifying primitive machines and then
combining them into more complex systems. We’ll start, here, by looking at ways of combining
state machines.

2.1 Machine Composition

We can apply our PCAP (primitive, combination, abstraction, pattern) methodology here, to build
more complex SMs out of simpler ones. Figure 2 sketches three types of SM composition: serial,
parallel, and feedback.

2.1.1 Serial composition

In serial composition, we take two machines and use the output of the first one as the input to the
second. The result is a new composite machine, whose input vocabulary is the input vocabulary
of the first machine and whose output vocabulary is the output vocabulary of the second machine.
It is, of course, crucial that the output vocabulary of the first machine be the same as the input
vocabulary of the second machine.

Recalling the delay machine from last week, let’s see what happens if we make the serial composition
of two delay machines. Let m1 be a delay machine with initial value init1 and m2 be a delay
machine with initial value init2. Then serialCompose(m1,m2) is a new state machine, constructed
by making the output of m1 be the input of m2. Now, imagine we feed a sequence of values,

6.01, Spring Semester, 2008—Course notes for Week 4 6

Figure 2: Serial, parallel, and feedback compositions of state machines.

3, 2, 5, 6, into the composite machine, m. What will come out? Let’s try to understand this by
making a table of the states and values at different times:

time m1 input m1 state m1 output m2 input m2 state m2 output
0 3 init1 init1 init1 init2 init2

1 2 3 3 3 init1 init1

2 5 2 2 2 3 3
3 6 5 5 5 2 2
4 — 6 6 6 5 5

Another way to think about state machines and composition is as follows. Let the input to m1 at
time t be called I1[t] and the output of m1 at time t be called O1[t]. Then, we can describe the
workings of the machine in terms of an equation:

O1[t] = I1[t− 1] , for all values of t > 0;

that is, that the output value at some time t is equal to the input value at the previous time step.
You can see that in the table above. The same relation holds for the input and output of m2:

O2[t] = I2[t− 1] for all values of t > 0.

Now, since we have connected the output of m1 to the input of m2, we also have that I2[t] = O1[t]

for all values of t. This lets us make the following derivation:

O2[t] = I2[t− 1]

6.01, Spring Semester, 2008—Course notes for Week 4 7

= O1[t− 1]

= I1[t− 2]

This makes it clear that we have built a “delay by two” machine, by serially composing two single
delay machines.

As with all of our systems of combination, we will be able to form the serial composition not only of
two primitive machines, but of any two machines that we can make, through any set of compositions
of primitive machines.

2.1.2 Parallel composition

In parallel composition, we take two machines and run them “side by side”. They both take the
same input, and the output of the composite machine is the pair of outputs of the individual
machines. The result is a new composite machine, whose input vocabulary is the same as the input
vocabulary of the component machines and whose output vocabulary is pairs of elements, the first
from the output vocabulary of the first machine and the second from the output vocabulary of the
second machine.

2.1.3 Feedback composition

Another important means of combination that we will make much use of later is the feedback
combinator, in which the output of a machine is fed back to be the input of the same machine at
the next step. The first value that is fed back is the output associated with the initial state of the
machine which is being operated upon. It is crucial that the input and output vocabularies of the
machine that is being operated on are the same (because the output at step t will be the input at
step t+ 1). Because we have fed the output back to the input, this machine doesn’t consume any
inputs; but we will treat the feedback value as an output of this machine.

Here is an example of using feedback to make a machine that counts.

We can start with a simple machine, an incrementer, that takes a number as input and returns
that same number plus 1 as the output. It has very limited memory. Here is its formal description:

S = numbers
I = numbers
O = numbers

t(s, i) = i+ 1

o(s) = s

s0 = 0

So, if you feed this machine the stream of inputs 4, 9, 2, 7, you will get the stream of outputs
0, 5, 10, 3, 8. As with all of our state machines, the output depends on the input from the previous
time step, so it does have memory in that sense, but it doesn’t remember much. We can us it to
build a machine with persistent memory by feeding the output of the incrementer back to be its
input.

To make a counter, which does need memory, we do a feedback operation on the incrementer,
connecting its output up to its input. More formally, if the input to the incrementer at time t

6.01, Spring Semester, 2008—Course notes for Week 4 8

Controller

Plant

 actions
(outputs of controller)

 observations
(outputs of plant)

Figure 3: Two machines connected together, as for a simulator.

is I[t] and the output of the incrementer at time i is O[t], then the definition of the incrementer
implies that O[t] = 1+ I[t− 1]. Now, doing the feedback operation means that I[t] = O[t], so that
O[t] = 1+O[t−1]. This is a recursive relationship, which bottoms out at O[0], which is the output
associated with the initial state of the original machine. We’ll be spending time over the next few
weeks studying machines whose behavior is defined by equations of this basic kind.

2.2 Plants and controllers

One common situation in which we combine machines is to simulate the effects of coupling a
controller and a so-called “plant”. A plant is a factory or other external environment that we
might wish to control. In this case, we connect two state machines so that the output of the plant
(typically thought of as some sensory observations) is input to the controller, and the output of the
controller (typically thought of as some actions) is input to the plant. This is shown schematically
in figure 3. For example, that’s what happens when you build a Soar brain that interacts with the
robot: the robot (and the world it is operating in) is the “plant” and the brain is the controller.
We can build a coupled machine by first connecting the machines serially and then using feedback
on that combination.

As a concrete example, let’s think about a robot driving straight toward a wall. It has a distance
sensor that allows it to observe the distance to the wall at time t, d[t], and it desires to stop at
some distance ddesired . The robot can execute velocity commands, and we program it to use this
rule to set its velocity at time t, based on its most recent sensor reading:

v[t] = K(ddesired − d[t− 1]) .

This controller can also be described as a state machine, whose input sequence is the values of d
and whose output sequence is the values of v.

S = numbers
I = numbers
O = numbers

t(s, i) = K(ddesired − i)

o(s) = s

s0 = dinit

6.01, Spring Semester, 2008—Course notes for Week 4 9

Now, we can think about the “plant”; that is, the relationship between the robot and the world.
The distance of the robot to the wall changes at each time step depending on the robot’s forward
velocity and the length of the time steps. Let δT be the length of time between velocity commands
issued by the robot. Then we can describe the world with the equation:

d[t] = d[t− 1] − δTv[t− 1] .

This system can be described as a state machine, whose input sequence is the values of the robot’s
velocity, v, and whose output sequence is the values of its distance to the wall, d.

Finally, we can couple these two systems, as for a simulator, to get a single state machine with no
inputs. We can observe the sequence of internal values of d and v to understand how the system is
behaving.

State machines are such a general formalism, that a huge class of discrete-time systems can be
described as state machines. The system of defining primitive machines and combinations gives us
one discipline for describing complex systems. It will turn out that there are some systems that
are conveniently defined using this discipline, but that for other kinds of systems, other disciplines
would be more natural. As you encounter complex engineering problems, your job is to find the
PCAP system that is appropriate for them, and if one doesn’t exist already, invent one.

State machines are such a general class of systems that although it is a useful framework for
implementing systems, we cannot generally analyze the behavior of state machines. That is, we
can’t make much in the way of generic predictions about their future behavior, except by running
them to see what will happen.

Next week, we will look at a restricted class of state machines, whose state is representable as a
bounded history of their previous states and previous inputs, and whose output is a linear function
of those states and inputs. This is a much smaller class of systems than all state machines, but it
is nonetheless very powerful. The important lesson will be that restricting the form of the models
we are using will allow us to make stronger claims about their behavior.

