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Revised Version

Overview of this week’s work

In software lab

• Work through the software lab.

• Submit whatever work you have finished at the end of the lab into the tutor.

Before the start of your design lab on Feb 28 or 29

• Read the class notes and review the lecture handout.

• Do the on-line tutor problems in section PS.5.2.

• Read the entire description of the design lab, so that you will be ready to work on it when
you get to lab.

In design lab

• Take the nanoquiz in the first 15 minutes; don’t be late.

• Work through the design lab with a partner, and take good notes on the results of your work.

At the beginning of your next software lab on Mar 4 or 5

• Submit online tutor problems in section PS.5.3.

• Submit written solutions to questions 1 through 14 as well as 17 and 18. All written work
must be done individually, and conform to the homework guidelines on the web page.

• You will need SoaR in this software lab, so if you don’t have SoaR installed
on your own machine, use a lab laptop or Athena station.

• Get the lab4 files via athrun 6.01 update or from the home page. We have
given you several that have Skeleton in the name. You should make a copy
of those files and rename them to remove the Skeleton. You will get failing
imports otherwise.
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Software Lab: Combinations of state machines

In class we discussed three methods of making new state machines out of old ones: serial composi-
tion, parallel composition, and feedback composition. Below (and in the file SimpleSMSkeleton.py)
is the skeleton of the SerialSM class. We’ve provided the constructor method, which take state
machines as input and construct a new, composite state machine.

class SerialSM:

def __init__(self , sm1 , sm2):

self.m1 = sm1

self.m2 = sm2

# Be careful to keep the timing consistent. The input to m2 has

# to be the current output of m1 , not the output after it is

# stepped.

def step(self , input=None):

# Your code here

def currentOutput(self):

# Your code here

Question 1: Write the step and currentOutput methods for a serial SM. Test it by combining
two incr machines (the definition is in SimpleSMSkeleton.py). Draw a picture showing
how the machines are connected. First, figure out what the result ought to be by filling out
a table like this one (remember that, by definition, output1 = input2:

step input1 state1 output1 state2 output2

0
1
2
3

Then test to be sure your machine is doing the right thing.

Question 2: Compare the results of composing a sum machine (defined in
SimpleSMSkeleton.py), which outputs the sum of all of its inputs so far with an
incr machine. Predict what the result ought to be by filling out a table like this one:

step input1 state1 output1 state2 output2
0
1
2
3

Then be sure you’re getting the right result.
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Feedback The following class defines a feedback state machine. Its init method takes a state
machine, sm, and returns a state machine with no inputs, which consists of sm with its output fed
back to its input. We’ll define the output of the feedback machine to be the same as the output of
sm.

class FeedbackSM:

def __init__(self , sm):

self.m = sm

def step(self , input=None):

return self.m.step(self.m.currentOutput ())

def currentOutput(self):

return self.m.currentOutput ()

Now, we can use this to couple two machines together, with the outputs of one machine serving as
the inputs to the other, and vice versa.

def simulatorSM(m1 , m2):

return FeedbackSM(SerialSM(m1, m2))

Question 3: In the code file, you’ll find the definition of makeIncr, which takes an initial state
as an argument, and then thereafter updates its state to be its input plus 1. If we make the
following coupled machine, we get a potentially surprising string of outputs:

>>> fizz = simulatorSM(makeIncr (10), makeIncr (100))

>>> run(fizz)

100

11

102

13

104

15

106

17

108

19

110

Explain why this happens. Draw a picture of the objects involved in this machine and say
exactly what state variables they contain. Fill in a table describing the inputs, states, and
outputs of each component machine at each step.
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Question 4: Imagine a robot driving straight toward a wall. We would like to use a state
machine to model this system, where the state is the distance from the robot to the wall in
meters (pick an initial distance for your initial state) and the input is the robot’s current
forward velocity in meters per second. Assume that each state transition corresponds to the
passage of 0.2 seconds. Write a primitive state machine to model this system. Hint: the
distance should go down as the machine steps.

Question 5: Now, let’s think of the controller that this robot might be executing. Assume the
robot would like to stop at some distance dDesired from the wall. The controller can be
modeled as a state machine that receives, as input, the current distance to the wall and
generates, as output, a velocity. For now, assume there’s no inertia involved, and so the
controller can choose any new velocity it wants, independent of its previous velocity. In
particular, let’s assume it selects a new velocity that is equal to k(d − dDesired ), where d
is the current distance to the wall, dDesired is the desired distance to the wall, and k is a
“gain” constant. Write a primitive state machine to model this controller.

Question 6: Now, use the simulatorSM function to put these two machines together. Run the
coupled machine. Try a large value of k and a small value of k. What happens? (By setting
SimpleSM.verbose to True, you can get PrimitiveSM.step to print out information about
each step of each primitive machine.)

Question 7: You can plot data from inside soar. If all you want to do is plot, the best
thing is to make a brain with only a setup method, and put your plotting commands in
there. Then, when you run the brain, you’ll see your data plotted in a window. The
SimpleSMBrainSkeleton.py file defines a setup function that will plot some data.

We have modified run, in the SimpleSMSkeleton.py file, so that it returns a list of all the
outputs generated by the machine. So, you can just copy the setup and step definitions
from SimpleSMBrainSkeleton.py file to the file with your state-machine definitions, call
run inside of setup to get some data, and then plot it using graphDiscrete. If you select
that file as a brain in soar, it will run your setup method.

Produce plots of the distance between the robot and the wall, over time, with two interest-
ingly different values of k. Note that the graphing windows have a Save button that lets
you save the graphs to a Postscript (.ps) file.

Now, check your understanding with the following question:
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Question 8: Ralph Reticulatus correctly implements SerialSM.step, and then makes a com-
mon mistake, and tries to run the following code:

rm = makeSumSM ()

ralph = SerialSM(rm , rm)

>>> transduce(ralph , [1]*10)

[0, 0, 2, 6, 14, 30, 62, 126, 254, 510, 1022]

(Note that this result depends on how, precisely, Ralph wrote his SerialSM.step method.
There are multiple ways to write that method correctly that will result in different outputs
in this case; but none will generate the desired sequence.)

Rita Rocksnake recognized Ralph’s problem, and reminded him that if we were working
with two bank accounts, he’d make two different instances of the Account class. Rita wrote
this code, instead:

rita = SerialSM(makeSumSM (),makeSumSM ())

transduce(rita , [1]*10)

[0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45]

She got the intended result. Explain why. Draw a picture of all of the objects in both Ralph
and Rita’s attempts, and say exactly what say what state variables they contain.



6.01, Spring Semester, 2008—Assignment 4, Issued: Tuesday, Feb. 26: Revised 6

Software Exploration: New primitive state machines

This is worth 2 out of 10 points for the Week 4 exploration.

In the basic work of this lab, we approached the serial, parallel, and feedback composition of
machines by defining new classes of state machines, in such a way that, for example, an instance
of a serial composition state machine contained instances of the two original state machines, asked
them to store their state internally, and simply asked them to step when necessary.

That approach works well when the goal is only to be able to run the composite state machines.
However, later in the course, we will find that state machines can be used as models of an envi-
ronment, for example, to plan a sequence of actions by trying out different action sequences in the
model and seeing which ones perform the best. In order to do that, we need to know the transition
function for the composite state machine as a single function.

So, in this exploration, we will pursue another strategy for composing state machines, in which
we provide a function makeSerialSM that takes as input two primitive state machines and returns
another primitive state machine. That means, it must construct new transition, output, and
initialization functions that describe the operation of the entire serial state machine, and use them
as arguments to the constructor of the primitiveSM class. To write such a function, you have to
start by thinking carefully about what the state of the composite machine will be.

Exploration 1: Write the function makeSerialSM of type

(primitiveSM , primitiveSM ) → primitiveSM

Exploration 2: Write the function makeParallelSM of type

(primitiveSM , primitiveSM ) → primitiveSM

Exploration 3: Write the function makeFeedbackSM of type

primitiveSM → primitiveSM

Exploration 4: Demonstrate these composition methods using various primitive machines that
you constructed in the earlier parts of the lab.
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Design Lab: Combinations of terminating behaviors

In lab 2, we explored a system for making primitive behaviors and combining them. In that case,
our behaviors were all operating at once, and their outputs were expressed as sets of actions. It’s
possible to do a lot of different things this way, but many people are frustrated by the inability to
ask their robot to do things sequentially, like drive up to the wall and then turn left. In this lab,
we’ll develop a new system of behavior definition and combination, which is yet another instance
of the PCAP idea, that allows sequential combination of behaviors.

Terminating state machines

So far, the state machines that we have looked at all run forever, performing a transduction from
a potentially infinite stream of inputs to a potentially infinite stream of outputs. Sometimes our
work feels like that too! But sometimes, jobs actually get done, and we move on to new tasks.

Our first step will be to build on our original state-machine abstract data type, to construct a
terminating state machine ADT. In addition to providing the step and currentOutput methods
that regular SM’s provided, terminating state machines have to provide two more methods:

• done: () → Boolean, which is True when the machine has terminated; and
• reset: () → (), which resets the machine back to its original initial state.

In other words, a terminating state machine is one where we can ask if it is “done.” A machine is
said to have terminated when its done method returns True. The way the machine decides if it has
terminated is by computing a function of the machine state, called terminationFunction.

We can take advantage of the object-oriented programming facility of inheritance to build termi-
nating state machines. Rather than redefining a whole new class of primitive terminating state
machines, we can make it be a subclass of the PrimitiveSM class. Here’s how it goes:
class PrimitiveTSM(PrimitiveSM ):

def __init__(self , transitionfn , outputfn , initStatefn ,

terminationfn = lambda x: False):

self.terminationFunction = terminationfn

self.initialStateFunction = initStatefn

PrimitiveSM.__init__(self , transitionfn , outputfn , initStatefn)

def done(self):

return self.terminationFunction(self.currentState)

def reset(self):

self.currentState = self.initialStateFunction ()

Here, we had to redefine the init method to do some additional work. It has a new argument,
terminationfn, which defaults to be a function that always returns False; so, the first thing it
does is to store that function. Then, it also stores the initStatefn argument, because it will need
it to implement the reset method. Finally, it calls the init method of the PrimitiveSM class
to do the rest of the work.

We don’t need to change the step or currentOutput methods from the way they work on PrimitiveSMs,
so we inherit them from PrimitiveSM and don’t need to say anything about them.

Then, we define the done method, which simply calls the terminationFunction function on
self.currentState. Who defined self.currentState? The init method of PrimitiveSM.
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And we define the reset method to reset the current state to whatever value is returned by
self.initialStateFunction.

Sequential combination

Now, we’d like to implement some means of combining these machines so we can make more complex
overall sequential structures. How can we make this happen?

We’d like to define a new class of terminating state machines, called SequentialTSM, that takes as
an initialization argument a list of terminating state machines. Running the sequence amounts to
running the first machine until it terminates, then the second machine until it terminates, and so
on.

To do this the sequence machine keeps track of which component machine it is currently running,
and keeps calling that machine’s associated step function until it has terminated; then starts
running the next machine in the sequence, and so on. The overall sequence machine terminates on
the step after the last component machine terminates.

The code below contains all but the step and done methods for the class, which you should
complete. Our reset method actually sets the initial state, so be sure to reset any component SM
before beginning to step it.
class SequentialTSM ():

def __init__(self , smList ):

self.smList = smList

self.reset ()

def reset(self):

self.counter = 0

self.smList[self.counter ].reset ()

def currentOutput(self):

if not self.done ():

return self.smList[self.counter ]. currentOutput ()

Here are some simple state machines and combinations to use when you’re testing your work, below.
def makeCharTSM(c):

return PrimitiveTSM(lambda s, i: True , # transition

lambda s: c, # output

lambda: False , # initial state

lambda s: s) # done

def makeTextSequenceTSM(str):

return SequentialTSM ([ makeCharTSM(c) for c in str])

The makeCharTSM procedure takes a character c and returns a terminating state machine whose
state is either True or False. If the state is True, then the machine is done. The initial state is
False, and one step will change the state to True. The output is the character c. So, this machine
runs for one step and generates the output sequence [c].

The makeTextSequenceTSM procedure takes a string as an argument and returns a SequentialTSM
that is made up of individual primitive TSMs that output a single character. So, if you run the
machine makeTextSequenceTSM(’abcd’), the output sequence should be [’a’, ’b’, ’c’, ’d’].
(Note that we have provided a new version of run, that runs a machine until it terminates (or until
a limit is reached, whichever comes first).



6.01, Spring Semester, 2008—Assignment 4, Issued: Tuesday, Feb. 26: Revised 9

Use these procedures to test your SequentialTSM class, below.

Question 9: Write the step and done methods of the SequentialTSM class. Be sure that each
call to step of the sequential machine results in exactly one call to step of some component
machine. The sequential machine should terminate one step after the last of its component
machines does (that is, if the done method of the last component machine first returns True
on step n, then the sequential machine should first return True on step n+ 1).

Checkpoint 1: To be completed by 45 minutes after the beginning of lab

Terminating behaviors

We can use our new sequencing abilities to get the robot to perform behaviors in sequence. We’ll
concentrate, this week, on building deterministic behaviors that specify completely how the robot
is to be controlled; but we’ll combine them by building sequential combinations of them.

A terminating behavior is a TSM that transduces a sequence of sensor inputs (each of which is our
usual list of sonar readings and a pose) into a sequence of actions. Here’s the basic brain structure
for using a terminating behavior.

def setup ():

robot.behavior = yourTSMHere

robot.behavior.reset()

def step ():

if robot.behavior.done ():

doAction(stop)

else:

doAction(robot.behavior.step(collectSensors ()))

If you defined a new terminating behavior class, like DoTheMacarena, then you’d have DoTheMacarena()
in the code above in place of yourTSMHere.

In the setup function, we make whatever calls are necessary to construct the terminating state ma-
chine that will generate the robot’s behavior. We store that machine in the variable robot.behavior.
You can think of robot as an object that will persist across invocations of setup and step in the
robot brain, and will let us store the state of our behavior (which is stored in the state of a TSM).

In the step function, we check to see if the behavior is done, and, if so, we stop. Otherwise, we
collect a fresh set of sensor values, feed them as input into the behavior machine’s step method,
get an action as an output from that machine, and issue the associated command.

Notice that the brain and the behavior each have their own step method, and that these are
different. This is an example of generic functions, implemented with the aid of object-oriented
programming. In this implementation, the brain’s step method calls the behavior’s step method
as long as the behavior is not done.1

1Are you wondering why we refer to the brain’s step as a method, when you don’t see any class definition here?
There really is a Brain class with step and setup methods, but the class definition is buried inside the implementation
of SoaR. There’s also a robot object that the brain uses in order to store attributes. That’s what lets the setup

procedure store something as robot.behavior, which can be referenced by the brain’s step. You can use robot for
storing anything that you like, and it will be local to the particular instance of the brain that SoaR is running.
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Let’s start by building some basic terminating behaviors for the robot. Here’s a somewhat stupid2

behavior, to illustrate how it might work. Imagine that we wanted to define a new primitive
terminating behavior object, called GoForwardUntilDeltaX, which moves the robot forward until
its x coordinate has increased by some value deltaX. We might write code like this:

class GoForwardUntilDeltaX:

def __init__ (self , deltaX ):

self.deltaX = deltaX

def reset(self):

(sonars , pose) = collectSensors ()

self.initialX = pose [0]

self.currentX = pose [0]

def step(self , sensors ):

(sonars , pose) = sensors

self.currentX = pose [0]

return self.currentOutput ()

def self.currentOutput ():

if self.done ():

return stop

else:

return go

def done(self):

return self.currentX > self.initialX + self.deltaX

The initializer for the class just remembers the delta value. When the behavior is reset (which
must be done before it is run for the first time), it looks at the robot’s current pose, and the initial
x coordinate, both as self.initialX, which will remain the same until the behavior is reset again,
and as self.currentX, which will be updated on each step. On each step, the behavior selects
the x coordinate of the pose from the sensor readings and remembers it. Then it generates an
appropriate output, by calling its own currentOutput method. This is a behavior, so the output
should be an action. The currentOutput method checks to see if the behavior is done; if so, it
returns stop and otherwise it returns go. The done method returns the value True when the
x coordinate of the current pose is greater than the x coordinate of the initial pose by at least
self.deltaX.

Implement the following primitive terminating behaviors and test them by themselves using the
brain code found in TSMBrainSkeleton.py. That file also contains some helper functions that you
might find useful.

When you’re testing terminating behaviors, you’ll need to reload the brain inside SoaR once a
behavior has terminated. Why? Because the program has to be run again from the beginning; if
it just continues from where it was, the behavior might still think it’s done.

2Why stupid? Because it’s hard to imagine why it would be useful to move in whatever direction the robot is
pointed until its global x coordinate has increased by some amount. It’s entirely possible that, given the heading of
the robot, x will decrease or remain unchanged as the robot moves forward.
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Question 10: Define a class TBDrive, with an init method that takes as an argument a
distance d to move. It should move forward a fixed distance, d, from the robot’s position at
the time the reset method is called, along the current heading, and then terminate. The
class should be a terminating behavior in the sense that it provides step, currentOutput,
reset, and done methods. Caveat: Remember that the robot might be moving at an
arbitrary angle with respect to its global coordinate system.

Question 11: Define a class TBTurn, with an init method that takes as an argument an
angle a to rotate through. It should be a terminating behavior, as above. It should rotate a
radians from the robot’s heading at the time the reset method is called, and then terminate.
Caveat: Remember that pose() returns an angle between 0 and 2π, so finding the difference
between two angles is not trivial. We have provided a helper in TSMBrainSkeleton.py
function you may find useful.

Question 12: Test these behaviors in the simulator, and take note of their performance.

Think carefully about an appropriate termination condition to use in each case. Don’t start
implementing these until you’ve talked with your LA about your plan!

Checkpoint 2: To be completed by 1.5 hours after the beginning of lab

Hip to be Square

Question 13: Now, use sequencing and your new primitives to make the actual robot drive in a
one meter square. Explain how your program works. Draw a diagram of the different class
instances involved.

Question 14: Execute your program for driving in a square repeatedly. Describe your results.
Think about a simple way of measuring and describing the accuracy of your program running
on the robot.

Checkpoint 3: To be completed by 2 hours after the beginning of lab

At this point, if you have not completed questions 4 through 7,
switch to doing them.

If you have completed them, you may continue on to do questions 15 and 16, which will
count for 4 exploration points. You may do this or the “Bug Algorithm” exploration at the
end of the lab (which is considerably more difficult), but may not get credit for both.
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Safety

We have now constructed a useful framework for building sequential behaviors on top of a substrate
that still affords frequent reading of and reaction to sensor readings. This means that, while carrying
out a sequence of behaviors, the robot can react to surprises. For now, we’ll show how it can change
its low-level behavior in reaction to sensor values, without changing the actual sequence of high-
level steps it is taking. Later in the class, we’ll develop a stream-based method of sequential
programming that affords a great deal of flexibility in the high-level sequencing, as well.

Question 15: Write a class TBDriveSafely that has the basic TBDrive terminating behavior as
a superclass, and that overrides one of the superclass methods so that the robot will sit and
wait rather than run into an obstacle. Note that it shouldn’t terminate when it’s blocked.
Test this on the robot and describe your experiments.

More means of combination

Implement two more means of combination for terminating behaviors. Here are some that we have
thought of:

• RepeatTSM: take a terminating state machine and a positive integer k. Executes that state
machine until done, k times.

• IfTSM: take a condition and two terminating behaviors. Test the condition when this be-
havior is reset (not created!), and then execute the first behavior if the condition was true
and the second if it was false.

• WhileTSM: take a condition and a terminating behavior. When the behavior is reset,
evaluate the condition. If it’s false, terminate. If not, execute the terminating behavior, then
test the condition again, etc.

• ParallelFunTSM: take a terminating behavior and a function, and call the function on
every step of the terminating behavior.

And here’s another possibly interesting behavior

• ForwardUntilBlockedTB that is a terminating behavior that moves forward until it is
blocked in front, and then terminates.

Question 16: Use all of your means of combination to make an interesting robot behavior (the
robot macarena, for example). Run this on the robot and describe the results.

Concepts covered in this lab

• Encapsulation of state into objects can provide useful abstraction.

• There are many different frameworks for abstraction and combination, and it’s important to
choose or design one suited to your problem.

• It can be hard to get repeatable behavior from a physical device.
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Homework due in your lab on March 4 or 5

1. Log in to the online tutor and complete the second half of this week’s tutor problems.

2. Write up and hand in the answers to questions 1 through 14, as well as the following thought
questions.

Question 17: How reliable was your program to drive in a square? What do you think was the
main contributing source to the errors? What are some strategies for reducing the error?

Question 18: We have now seen two different frameworks for making primitive robot behaviors
and combining them: the constraint (set-based) and sequential (terminating behaviors)
approaches. Consider a robot for operating in a household, doing chores. Give examples of
situations in which each type of behavior combination would be appropriate.
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Figure 1: Robot in a cul-de-sac.

Exploration: Bug Algorithm

This is worth 8 out of 10 points for the Week 4 exploration.

You should have found that your program for moving forward is of of limited utility in the presence
of obstacles. That is, that your robot could find an obstacle directly between itself and the goal
that it is trying to reach. Some kinds of blockages can be escaped by simple behaviors (consider
the goal as an attractive force and the sonar measurements as repulsive forces, add up all the forces
and move along the resultant force), but a robot trapped in a cul-de-sac, as shown in figure 1, will
have to be smarter to reach its goal.

One effective method for getting out of such jams is the “Bug 2” algorithm3. The idea is illustrated
in figure 2. Here’s the algorithm:

• Compute the line L from start to goal
• Follow that line until an obstacle is encountered
• Follow the obstacle (in either direction) until you encounter the L line again, closer to the goal
• Leave the obstacle and continue toward the goal

Note that in the Bug2 algorithm the robot’s motion is not just a function of the sensors, it depends
on the line L which was defined when the robot started. So, it requires remembering values between
invocations of the step procedure. If you want to use a variable to store a value between invocations
of the step procedure, you can extend your brain to something like this:

#code that is called once at startup

def setup ():

print "start"

robot.x = 0

#code that is called about 10 times a second

def step ():

robot.x = robot.x + 1

print "Step ", robot.x

3It is often better, but sometimes much worse than another algorithm called “Bug 1”. For more info see http:

//www.cs.jhu.edu/~hager/Teaching/cs336/Notes/Chap2-Bug-Alg.pdf
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Figure 2: The Bug2 algorithm.

When implementing Bug2, you can define the line L in the setup procedure and then the basic
behavior in the step procedure. In later weeks, we will develop more elaborate algorithms that
depend on state, which encapsulates the robot’s history.

A comment on representing lines. In high school, they probably taught you to represent the line
between two points (x1, y1) and (x2, y2) in the form y = mx+b where m is the slope y2−y1/x2−x1

and b is the y-intercept (what’s the expression for that?). You can use m and b to represent the line
L, you can test whether an (x, y) position is on the line by checking whether it (nearly) satisfies4 the
equation for the line. You should note that the y = mx+b is not really a very good representation
for lines; it cannot represent vertical lines, since their slope is infinite. A better representation is
ax + by + c = 0. You can stick with y = mx + b for now, but you should check for the vertical
case and possibly change one of the endpoints a little bit.

The bug algorithm has some state in it. Think about how you could use the terminating sequential
behavior framework (or state machines, or some other systematic way of using state) to structure
your algorithm.

To simplify testing and debugging in the simulator, we recommend adding this definition to your
file
def cheatPose ():

return app.soar.output.abspose.get()

and using cheatPose() instead of pose() to determine where the robot is. If you do this, then
when you drag the robot around the simulator window with the mouse, it will magically know the

4Even in the simulator you cannot expect that the position of the robot will fall exactly on the line.
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Figure 3: What would Bug2 do in this domain without the closer to goal test?

true pose. (On the real robot, of course, if you were to pick it up and put it down, it would have
no idea that it had moved.)

Exploration 5: Implement Bug2 in the SoaR simulator. Test it on the BugTest worlds in the
ps4 distribution.

Exploration 6: Explain why Bug2 would be hard to implement on the real robots.

Exploration 7: If we hadn’t added the closer to the goal requirement in the Bug 2 algorithm,
what would it have done on the environment in figure 3? Try it with the robot turning to
the right when it hits the obstacle, and with it turning left.

Exploration 8: Integrate your implementation of Bug2 into your program to drive in a square.


