
6.01, Spring Semester, 2008—Course notes for Week 3 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.01—Introduction to EECS I
Spring Semester, 2008

Course notes for Week 3

Basic Object-Oriented Programming and State Machines

1 Introduction

Here is our familiar framework for thinking about primitives and means of combination, abstraction,
and capturing common patterns. In this lecture, we’ll add ideas for abstracting and capturing com-
mon patterns in data structures, and ultimately achieving even greater abstraction and modularity
by abstracting over data structures combined with the methods that operate on them.

Procedures Data
Primitives +, *, == numbers, strings
Means of combination if, while, f(g(x)) lists, dictionaries, objects
Means of abstraction def abstract data types, classes
Means of capturing common patterns higher-order procedures generic functions, classes

Let’s start with an example. We’ve looked at three different implementations of sets:

• as lists;
• as functions; and
• as whatever Python uses in its built-in data type.

What is in common between these implementations is that they included the same set of abstract
operations, but with different details about how the data was stored and how the various operations
were computed. The good thing about thinking about sets in the abstract is that we can build
something more complex (such as non-deterministic behaviors) on top of an implementation of set
operations, without caring too much about how those set operations are ultimately implemented.
We’ll call such a thing an abstract data type. It’s abstract, in that you can use it without knowing
the implementation details. We used Python sets by reading their documentation, but without
having any idea how they’re actually implemented in Python.

Using ADTs is good because it

1. allows us to concentrate on the high-level aspects of the job we’re trying to do; and

2. allows us or someone else to change the underlying implementation of sets (perhaps to make
it faster or more memory-efficient) without having to change any of the code that we’ve
implemented that uses sets.

An abstract data type (ADT) is a collection of related operations that can be performed on a set
of data. The documentation of an ADT specifies its contract: a promised set of relationships
among the inputs and outputs of the functions involved. For instance, part of the contract of a
set ADT would be that the union of two sets, s1 and s2, would contain all and only elements

6.01, Spring Semester, 2008—Course notes for Week 3 2

that are contained in s1 or s2. ADTs are often used to describe generic structures like sets or
dictionaries; they can also be used to describe more particular structures like bank accounts or
telephone-directory entries.

A set ADT might include the following operations:

makeSet : list → set
contains : (item, set)→ Boolean
isSubset : (set , set)→ Boolean

intersection : (set , set)→ set
union : (set , set)→ set
len : set → int

contents : set → list

A bank-account ADT might include the following operations:

makeBankAccount : (float , float , string , string)→ account
balance : account → number
owner : account → string

creditLimit : account → number
deposit : account → None

Operations like makeSet are often called constructors: they make a new instance of the ADT.
Operatons like balance and contents are called selectors: they select out and return some piece
of the data associated with the ADT. The deposit operation is special: it doesn’t return a value,
but it does change (sometimes we say side-effect) values stored inside the object (in this case, it
will change the balance of the bank account, but we don’t know exactly how it will do it, because
we don’t know how the balance is represented internally).

Different computer languages offer different degrees of support for using ADTs. Even in the most
primitive language, you can write your code in a modular way, to try to preserve abstraction. But
modern object-oriented languages offer built-in facilities to make this style easy to use.

2 Execution Model

This is repeated from section 3 of week 1 notes as a review; we will rely on it in the next section.

In order to really understand Python’s object-oriented programming facilities, we have to start by
understanding how it uses environments to store information, during and between procedure calls.

2.1 Environments

The first thing we have to understand is the idea of binding environments (we’ll often just call them
environments; they are also called namespaces and scopes). An environment is a stored mapping
between names and entities in a program. The entities can be all kinds of things: numbers, strings,

6.01, Spring Semester, 2008—Course notes for Week 3 3

lists, procedures, objects, etc. In Python, the names are strings and environments are actually
dictionaries, which we’ve already experimented with.

Environments are used to determine values associated with the names in your program. There are
two operations you can do to an environment: add a binding, and look up a name. You do these
things implcitly all the time in programs you write. Consider a file containing

a = 5
print a

The first statement, a = 5, creates a binding of the name a to the value 5. The second statement
prints something. First, to decide that it needs to print, it looks up print and finds an associated
built-in procedure. Then, to decide what to print, it evaluates the associated expression. In this
case, the expression is a name, and it is evaluated by looking up the name in the environment and
returning the value it is bound to (or generating an error if the name is not bound).

In Python, there are environments associated with each module (file) and one called builtin
that has all the procedures that are built into Python. If you do

>>> import __builtin__
>>> dir(__builtin__)

you’ll see a long list of names of things (like ’sum’), which are built into Python, and whose names
are defined in the builtin module. You don’t have to type import builtin ; as we’ll see below,
you always get access to those bindings. You can try importing math and looking to see what
names are bound there.

Another operation that creates a new environment is a function call. In this example,

def f(x):
print x

>>> f(7)

when the function f is called with argument 7, a new local environment is constructed, in which
the name x is bound to the value 7.

So, what happens when Python actually tries to evaluate print x? It takes the symbol x and has
to try to figure out what it means. It starts by looking in the local environment, which is the one
defined by the innermost function call. So, in the case above, it would look it up and find the value
7 and return it.

Now, consider this case:

def f(a):
def g(x):

print x, a
return x + a

return g(7)
>>> f(6)

What happens when it’s time to evaluate print x, a? First, we have to think of the environments.
The first call, f(6) establishes an environment in which a is bound to 6. Then the call g(7)
establishes another environment in which x is bound to 7. So, when needs to print x it looks in the
local environment and finds that it has value 7. Now, it looks for a, but doesn’t find it in the local
environment. So, it looks to see if it has it available in an enclosing environment; an environment

6.01, Spring Semester, 2008—Course notes for Week 3 4

that was enclosing this procedure when it was defined. In this case, the environment associated
with the call to f is enclosing, and it has a binding for a, so it prints 6 for a. So, what does f(6)
return? 13.

You can think of every environment actually consisting of two things: (1) a dictionary that maps
names to values and (2) an enclosing environment.

If you write a file that looks like this:

b = 3
def f(a):

def g(x):
print x, a, b
return x + a + b

return g(7)

>>> f(6)
7 6 3
16

When you evaluate b, it won’t be able to find it in the local environment, or in an enclosing
environment created by another procedure definition. So, it will look in the global environment.
The name global is a little bit misleading; it means the environment associated with the file. So, it
will find a binding for b there, and use the value 2.

One way to remember how Python looks up names is the LEGB rule: it looks, in order, in the
Local, then the Enclosing, then the Global, then the Builtin environments, to find a value for a
name. As soon as it succeeds in finding a binding, it returns that one.

Bindings are also created when you execute an import statement. If you execute

import math

Then the math module is loaded and the name math is bound, in the current environment, to the
math module. No other names are added to the current environment, and if you want to refer to
internal names in that module, you have to qualify them, as in math.sqrt. If you execute

from math import sqrt

then, the math module is loaded, and the name sqrt is bound, in the current environment, to
whatever the the name sqrt is bound to in the math module. But note that if you do this, the
name math isn’t bound to anything, and you can’t access any other procedures in the math module.

Another thing that creates a binding is the definition of a function: that creates a binding of the
function’s name, in the environment in which it was created, to the actual function.

Finally, bindings are created by for statements and list comprehensions; so, for example,

for element in listOfThings:
print element

creates successive bindings for the name element to the elements in listOfThings.

Figure 2 shows the state of the environments when the print statement in the example code shown
in figure 1 is executed. Names are first looked for in the local scope, then its enclosing scope (if
there were more than one enclosing scope, it would continue looking up the chain of enclosing
scopes), and then in the global scope.

6.01, Spring Semester, 2008—Course notes for Week 3 5

a = 1
b = 2
c = 3
def d(a):

c = 5
from math import pi
def e(x):

for i in range(b):
print a, b, c, x, i, pi, d, e

e(100)

>>> d(1000)
1000 2 5 100 0 3.14159265359 <function d at 0x4e3f0 > <function e at 0x4ecf0 >
1000 2 5 100 1 3.14159265359 <function d at 0x4e3f0 > <function e at 0x4ecf0 >

Figure 1: Code and what it prints

2
3

1

<proc>d
c
b
a

5
3.14159

1000

<proc>e
pi
c
a

0
100

i
x

enclosing
environment

global

local

Figure 2: Binding environments that were in place when the first print statement in figure 1 was
executed.

6.01, Spring Semester, 2008—Course notes for Week 3 6

Local versus global references There is an important subtlety in the way names are handled
in handled in the environment created by a procedure call. When a name that is not bound in
the local environment is referred to, then it is looked up in the enclosing, global, and built-in
environments. So, as we’ve seen, it is fine to have
a = 2
def b():

print a

When a name is assigned in a local environment, a new binding is created for it. So, it is fine to
have
a = 2
def b():

a = 3
c = 4
print a, c

Both assignments cause new bindings to be made in the local environment, and it is those bindings
that are used to supply values in the print statement.

But here is a code fragment that causes trouble:
a = 3
def b():

a = a + 1
print a

It seems completely reasonable, and you might expect it to print 4. But, instead, it generates an
error if we try to call b. What’s going on?? It all has to do with when Python decides to add a
binding to the local environment. When it sees this procedure definition, it sees that the name a
is assigned to, and so, at the very beginning, it puts an entry for a in the local environment. Now,
when it’s time to execute the statement
a = a + 1

it starts by evaluating the expression on the right hand side: a + 1. When it tries to look up the
name a in the local environment, it finds that it has been added to the environment, but hasn’t
yet had a value specified. So it generates an error.

We can still write code to do what we intended (write a procedure that increments a number named
in the global environment), by using the global declaration:
a = 3
def b():

global a
a = a + 1
print a

>>> b()
4
>>> b()
5

The statement global a asks that a new binding for a not be made in the local environment.
Now, all references to a are to the binding in the global environment, and it works as expected. In
Python, we can only make assignments to names in the local scope or in the global scope, but not
to names in an enclosing scope. So, for example,

6.01, Spring Semester, 2008—Course notes for Week 3 7

def outer ():
def inner ():

a = a + 1
a = 0
inner()

In this example, we get an error, because Python has made a new binding for a in the environment
for the call to inner. We’d really like for inner to be able to see and modify the a that belongs to
the environment for outer, but there’s no way to arrange this.

3 Object-oriented programming

Object-oriented programming (OOP, to its friends) helps us with a lot of aspects of abstraction
in programming; this week, we’ll just look at how it helps with constructing ADTs. The OOP
facilities in Python are quite lightweight and flexible.

A class is a collection of procedures (and sometimes data) attached to names in an environment,
which is meant to represent a generic type of object, like a set or a bank account. It typically
contains the procedure definitions that allow it to fulfill the specifications of an ADT.

An object is also a collection of procedures and data, attached to names in an environment, but
it is intended to represent a particular instance of a class, such as the set containing 1 and 2,
or Leslie’s bank account. When we want to make a particular bank account, we can create an
object that is an instance of the bank account class. Instances (objects) are environments whose
“enclosing” environment is the class of which they are instances. So, an object has access to all of
the values defined in its class, but it can be specialized for the the particular instance it is intended
to represent.

Here’s a very simple class, and a little demonstration of how it can be used.

class SimpleThing:
a = 6

>>> x = SimpleThing ()
>>> x
<__main__.SimpleThing instance at 0x85468 >
>>> x.a
6
>>> y = SimpleThing ()
>>> y.a
6
>>> y.a = 10
>>> y.a
10
>>> x.a
6
>>> SimpleThing.a
6

To define a class, you start with a class statement, and then a set of indented assignments
and definitions. Each assignment to a new name makes a new variable binding within the class.
Whenever you define a class, you get a constructor, which will make a new instance of the class.

6.01, Spring Semester, 2008—Course notes for Week 3 8

In our example above, the constructor is SimpleThing().1 When we make a new instance of
SimpleThing, we get an object. We can look at the value of attribute a of the object x by writing
x.a. An object is an environment, and this is the syntax for looking up name a in environment x.
There is no binding for a in x, so it looks in its enclosing environment, which is the environment of
the class SimpleThing, and finds a binding for a there, and returns 6.

If we make another instance, y, of the class, and assign a value to its attribute a, that makes a
fresh binding for a in y, and doesn’t change the original binding of SimpleThing.a.

Some of you may have experience with Java, which is much more rigid about what you can do
with objects than Python is. In Python, you can add attributes to objects on the fly. So, we could
continue the previous example with:

>>> x.newAttribute = "hi"

and there would be no problem.

Here’s another example to illustrate the definition and use of methods, which are procedures whose
first argument is the object, and that can be accessed via the object.

class Square:
dim = 6

def getArea (self):
return self.dim * self.dim

def setArea (self , area):
self.dim = area **0.5

This class is meant to represent a square. Squares need to store, or remember, their dimension, so
we make an attribute for it, and assign it initially to be 6 (we’ll be smarter about this in the next
example). Now, we define a method getArea that is intended to return the area of the square.
There are a couple of interesting things going on here.

Like all methods, getArea has an argument, self, which will stand for the object that this method
is supposed to operate on.2 Now, remembering that objects are environments, the way we can find
the dimension of the square is by looking up the name dim in this square’s environment, which was
passed into this method as the object self.

We define another method, setArea, which will set the area of the square to a given value. In order
to change the square’s area, we have to compute a new dimension and store it in the dim attribute
of the square object.

Now, we can experiment with instances of class Square.

>>> s = Square ()
>>> s.getArea ()
36
>>> Square.getArea(s)

1A note on style. It is useful to adopt some conventions for naming things, just to help your programs be more
readable. We’ve used the convention that variables and procedure names start with lower case letters and that class
names start with upper case letters. And we try to be consistent about using something called “camel caps” for
writing compound words, which is to write a compound name with the successiveWordsCapitalized. An alternative
is to use underscores.

2The argument doesn’t have to be named self, but this is a standard convention.

6.01, Spring Semester, 2008—Course notes for Week 3 9

36
>>> s.dim
6
>>> s.setArea (100)
>>> s.dim
10.0

We make a new instance using the constructor, and ask for its area by writing s.getArea(). This is
the standard syntax for calling a method of an object, but it’s a little bit confusing because its argu-
ment list doesn’t really seem to match up with the method’s definition (which had one argument).
A style that is less convenient, but perhaps easier to understand, is this: Square.getArea(s).
Remembering that a class is also an environment, with a bunch of definitions in it, we can see
that it starts with the class environment Square and looks up the name getArea. This gives us
a procedure of one argument, as we defined it, and then we call that procedure on the object s.
It is fine to use this syntax, if you prefer, but you’ll probably find the s.getArea() version to be
more convenient. One way to think of it is as asking the object s to perform its getArea method
on itself.

Here’s a version of the square class that has a special initialization method.

class Square1:
def __init__(self , initialDim):

self.dim = initialDim

def getArea (self):
return self.dim * self.dim

def setArea (self , area):
self.dim = area **0.5

def __str__(self):
return "Square of dim " + str(self.dim)

Whenever the constructor for a class is called, Python looks to see if there is a method called
init and calls it, with the newly constructed object as the first argument and the rest of the

arguments from the constructor added on. So, we could make two new squares by doing

>>> s1 = Square1 (10)
>>> s1.dim
10
>>> s1.getArea ()
100
>>> s2 = Square1 (100)
>>> s2.getArea ()
10000
>>> print s1
Square of dim 10

Now, instead of having an attribute dim defined at the class level, we create it inside the initialization
method. The initialization method is a method like any other; it just has a special name. Note
that it’s crucial that we write self.dim = initialDim here, and not just dim = initialDim. All
the usual rules about environments apply here. If we wrote dim = initialDim, it would make a
variable in the method’s local environment, called dim, but that variable would only exist during

6.01, Spring Semester, 2008—Course notes for Week 3 10

the execution of the init procedure. To make a new attribute of the object, it needs to be
stored in the environment associated with the object, which we access through self.

Our class Square1 has another special method, str . This is the method that Python calls on
an object whenever it needs to find a printable name for it. By default, it prints something like
< main .Square1 instance at 0x830a8>, but for debugging, that can be pretty uninformative.
By defining a special version of that method for our class of objects, we can make it so when we
try to print an instance of our class we get something like Square of dim 10 instead. We’ve used
the Python procedure str to get a string representation of the value of self.dim. You can call
str on any entity in Python, and it will give you a more or less useful string representation of it.
Of course, now, for s1, it would return ’Square of dim 10’. Pretty cool.

Okay. Now we can go back to running the bank.

class Account:
def __init__(self , initialBalance):

self.currentBalance = initialBalance
def balance(self):

return self.currentBalance
def deposit(self , amount):

self.currentBalance = self.currentBalance + amount
def creditLimit(self):

return min(self.currentBalance * 0.5, 10000000)

>>> a = Account (100)
>>> b = Account (1000000)

>>> Account.balance(a)
100
>>> a.balance ()
100
>>> Account.deposit(a, 100)
>>> a.deposit (100)
>>> a.balance ()
300
>>> b.balance ()
1000000

We’ve made an Account class that maintains a balance as state. There are methods for returning
the balance, for making a deposit, and for returning the credit limit. These methods hide the
details of the internal representation of the object entirely, and each object encapsulates the state
it needs.

Here’s the definition of a class representing the set ADT. We’ve called it Sset so it won’t clash
with Python’s set.

class Sset:
def __init__(self , items):

self.contents = items

def contains(self , x):
return x in self.contents

def add(self , x):
self.contents.append(x)

6.01, Spring Semester, 2008—Course notes for Week 3 11

def intersection(self , otherSet):
return [x for x in self.contents if otherSet.contains(x)]

def union(self , otherSet):
return self.contents + otherSet.elements ()

def elements(self):
return self.contents

def __str__(self):
return str(self.contents)

def __repr__(self):
return str(self.contents)

Note that we’ve included both a str and a repr method. The Python documentation has
this to say on the subject:

“The str() function is meant to return representations of values which are fairly
human-readable, while repr() is meant to generate representations which can be read
by the interpreter (or will force a SyntaxError if there is not equivalent syntax). For
objects which don’t have a particular representation for human consumption, str() will
return the same value as repr().”

When you do print x, then str(x) will be printed. When you just cause the Python shell to
evaluate x and print the result, then it will print repr(x). When in doubt, it’s usually handy to
define both.

Here are some examples of using Sset:

>>> s1 = Sset([1, 2, 3])
>>> s2 = Sset([3, 4, 5, 6, 7])
>>> s3 = Sset([4, 6, 8, 10])
>>> print s1.intersection(s2)
[3]
>>> print Sset.intersection(s1 , s2)
[3]
>>> print s1.elements ()
[1, 2, 3]
>>> s1.add (57)
>>> print s1.elements ()
[1, 2, 3, 57]

4 State Machines

Both because they are a very important idea in electrical engineering, computer science, and a
variety of other fields, and because they’re a good domain for exercising OOP, we’ll turn our
attention to state machines.

A state machine (SM) is characterized by:

• a set of states, S,

6.01, Spring Semester, 2008—Course notes for Week 3 12

• a set of inputs, I, also called the input vocabulary,
• a set of outputs, O, also called the output vocabulary,
• a transition function, t, that indicates, for every state and input pair, what the next state will

be,
• an output function, o, that indicates, for every state, what output to produce in that state, and
• an initial state, so, that is the element of S that the machine starts in.

Together, these functions describe a discrete-time transition system, that can be thought of as
performing a transduction: it takes in a (potentially infinite) sequence of inputs and generates a
(potentially infinite) sequence of outputs.

Let’s start by considering a simple example, where:

S = integers
I = {u, d}

O = integers

t(s, i) =

{
s + 1 if i = u

s − 1 if i = d

o(s) = s

s0 = 0

This machine can count up and down. It starts in state 0. Now, if it gets input u, it goes to state
1; if it gets u again, it goes to state 2. If it gets d, it goes back down to 1, and so on. In this
case, the output is always the same as the state (because the output function o is the identity). If
we were to feed it an input sequence of u, u, u, d, d, u, u,, it would generate the output sequence
0, 1, 2, 3, 2, 1, 2, 3.

Delay An even simpler machine just takes the input and passes it through to the output. No
state machine can be an instant pass-through, though, so the kth element of the input sequence
will be the k + 1st element of the output sequence. Here’s the machine definition, formally:

S = anything
I = anything

O = anything
t(s, i) = i

o(s) = s

s0 = 0

Given an input sequence i0, i1, i2, . . ., this machine will produce an output sequence 0, i0, i1, i2,
The initial 0 comes because it has to be able to produce an output before it has even seen an input,
and that output is produced based on the initial state, which is 0. This very simple building block
will come in handy for us later on.

Running Sum Here is a machine whose output is the sum of all the inputs it has ever seen.

S = numbers
I = numbers

6.01, Spring Semester, 2008—Course notes for Week 3 13

O = numbers
t(s, i) = s + i

o(s) = s

s0 = 0

Given input sequence 1, 5, 3, it will generate an output sequence 0, 1, 6, 9.

Language acceptor Here is a machine whose output is 1 if the input string adheres to a simple
pattern, and 0 otherwise. In this case, the pattern has to be a, b, c, a, b, c, a, b, c,

S = {0, 1, 2, 3}

I = {a, b}

O = {0, 1}

t(s, i) =

1 if s = 0, i = a

2 if s = 1, i = b

0 if s = 2, i = c

3 otherwise

o(s) =

{
0 if s = 3

1 otherwise
s0 = 0

Elevator As a final example, we’ll make a state-machine model of a crippled elevator, which
never actually changes floors. All we can ask the elevator to do is open or close its doors, or do
nothing. So, the possible inputs to this machine are commandOpen, commandClose, and noCommand.
The elevator doors don’t open and close instantaneously, so we model the elevator as having four
possible states: opened, closing, closed, and opening. These correspond to the doors being
fully open, starting to close, being fully closed, and starting to open. Finally, the machine can
generate three possible outputs, which give some useful information about the state of the elevator.
If the doors are closed, the output is sensorClosed; if they are open, the output is sensorOpened;
and otherwise the output is noSensor.

State machines with a finite (small) number of states are often diagrammed using state diagrams;
figure 3 shows the transition and output functions for our elevator model. The circles represent
states. The bold label in the circle is the state name; the other entry is the output from that state.
The arcs indicate transitions. The labels on the arcs are one or more inputs that lead to those state
transitions.

In the closed state, if the elevator is commanded to open, it goes into the opening state and the
output is noSensor. In the opening state, the commandOpen or noCommand input causes a transition
to the opened state and the output of sensorOpened. In the opening state, the commandClose
input causes a transition to the closing state. The remaining transitions and outputs can be read
from the state diagram.

The transition function for the machine should indicate what state the machine transitions to as
a result of each of the inputs and so it captures the arcs of the machine. In general, we have to
specify the effect of every input in every state. The output function is simpler; it just indicates the
output for every state.

6.01, Spring Semester, 2008—Course notes for Week 3 14

opened
sensorOpened

opening
noSensor

closing
noSensor

closed
sensorClosed

commandClose

commandOpen

commandClose

commandOpen commandClose, noCommand

commandOpen, noCommand

commandOpen, noCommand

commandClose, noCommand

Figure 3: State diagram for a very simple elevator. Inspired by a figure from the Wikipedia article:
Finite state machine

Here is the formal description of the elevator machine:

S = {opened , closing , closed , opening}

I = {commandOpen, commandClose, noCommand }

O = {sensorOpened , sensorClosed , noSensor }

s0 = closed
t(s, i) = table1
o(s) = table2

The transition and output functions are most conveniently described using tables. The transition
function is:

s i t(s, i)

opened commandOpen opened
opened noCommand opened
opened commandClose closing
closing commandOpen opening
closing noCommand closed
closing commandClose closed
closed commandOpen opening
closed noCommand closed
closed commandClose closed
opening commandOpen opened
opening noCommand opened
opening commandClose closing

6.01, Spring Semester, 2008—Course notes for Week 3 15

The output function is:

s o(s)

opened sensorOpened
closing noSensor
closed sensorClosed
opening noSensor

To help think about this machine, assume the elevator starts in the closed state, and try to
predict the sequence of states and outputs that would result from the following sequence of inputs:
commandOpen, commandClose, noCommand , commandOpen.

Composition Now we know how to define primitive state machines. Next week, we’ll see how to
apply our PCAP ideas to state machines, by developing a set of state-machine combinators, that
will allow us to put primitive state machines together to make more complex machines.

Knuth on Elevator Controllers Donald E. Knuth is a computer scientist who is famous for,
among other things, his series of textbooks (as well as for TEX, the typesetting system we use to
make all of our handouts), and a variety of other contributions to theoretical computer science.

“It is perhaps significant to note that although the author had used the elevator
system for years and thought he knew it well, it wasn’t until he attempted to write
this section that he realized there were quite a few facts about the elevator’s system
of choosing directions that he did not know. He went back to experiment with the
elevator six separate times, each time believing he had finally achieved a complete
understanding of its modus operandi. (Now he is reluctant to ride it for fear some new
facet of its operation will appear, contradicting the algorithms given.) We often fail to
realize how little we know about a thing until we attempt to simulate it on a computer.”

The Art of Computer Programming, Donald E., Knuth, Vol 1. page 295. On the
elevator system in the Mathematics Building at Cal Tech. First published in 1968

