
6.01, Spring Semester, 2008—Lecture Notes: Feb. 12 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.01—Introduction to EECS I
Spring Semester, 2008

Lecture Notes: Feb. 12

Capturing Common Patterns with Higher-Order Procedures

Three procedures for computing sums

def sumint(low,high):
s=0
x=low
while x <= high:

s = s + x
x = x + 1

return s

def sumsquares(low,high):
s=0
x=low
while x <= high:

s = s + x**2
x = x + 1

return s

Approximation to π2/8

def piSum(low,high):
s=0
x=low
while x < high:

s = s + 1.0/x**2
x = x + 2

return s

The general idea of summation, expressed as a procedure that captures the common pattern:
∑b

a f:

def summation(low,high,f,next):
s=0
x=low
while x <= high:

s = s + f(x)
x = next(x)

return s

6.01, Spring Semester, 2008—Lecture Notes: Feb. 12 2

The sumint procedure, expressed as a general sum

def sumint(low,high):
def identity(x): return x
def add1(x): return x+1
return summation(low,high,identity,add1)

The same three sums, expressed in terms of the general idea of summation, using lambda to avoid
having to name the internal procedures:

def sumsquares(low,high):
return summation(

low,
high,
lambda x: x**2,
lambda x: x+1
)

def sumsquares(low,high):
return summation(

low,
high,
lambda x: x**2,
lambda x: x+1
)

def piSum(low,high):
return summation(low,

high,
lambda x: 1.0/x**2,
lambda x: x+2
)

Expressing a general method of finding a fixed point of a function f:

def fixedPoint(f,firstGuess):
def close(g1,g2):

return abs(g1-g2)<.0001
def iter(guess,next):

while True:
if close(guess, next):

return next
else:

guess=next
next=f(next)

return iter(firstGuess,f(firstGuess))

6.01, Spring Semester, 2008—Lecture Notes: Feb. 12 3

Then we can compute square roots as fixed points:

def sqrt(x):
def average(a,b): return (a+b)/2.0
return fixedPoint(lambda g: average(g,x/g),1.0)

Four procedures for computing the sum of f(x) = x
√

x for all the numbers in a list. They all do
the same computation, but are expressed differently.

def sumf1(p):
result = 0
i = 0
while i < len(p):

result = result + p[i]*sqrt(p[i])
i = i + 1

return result

def sumf2(p):
result = 0
for x in p:

result = result + x*sqrt(x)
return result

def sumf3(p):
return reduce(

add,
[x*sqrt(x) for x in p]
)

def sumf4(p):
return reduce(

add,
map(lambda x: x*sqrt(x),p)
)

Computing derivatives: Given a function f, the derivative Df is another function. Therefore D

itself is a function whose value is a function:

def deriv(f):
dx=0.0001
return lambda x:(f(x+dx)-f(x))/dx

6.01, Spring Semester, 2008—Lecture Notes: Feb. 12 4

We can write this equivalently, without using lambda:

def deriv(f):
dx=0.0001
def d(x):

return (f(x+dx)-f(x))/dx
return d

In either case, if we apply deriv to a procedure, the result is another procedure, that we can then
apply to a number, e.g.,

>>> deriv(square)(10)

This returns 20 (approximately) because the derivative of x 7→ x2 is x 7→ 2x.

Once we can express derivative, we can express Newton’s method:

def newtonsMethod(f,firstGuess):
return fixedPoint(

lambda x: x - f(x)/deriv(f)(x),
firstGuess)

and we can express computing square roots as an application of Newton’s method:

def sqrt(x):
return newtonsMethod(

lambda y: y**2 - x,
1.0)

The general method of iterative improvement, expressed as a procedure:

def iterativeImprove(goodEnough,improve,start):
result = start
while not goodEnough(result):

result = improve(result)
resturn result

Rights and privileges of first-class citizens in programming languages (Christopher
Strachey)

• May be named by variables

• May be passed as arguments to procedures

• May be returned as results of procedures

• May be included in data structures

