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Where am I?

Last week, we introduced the idea of a state space, and its use for planning trajectories from some

starting state to a goal. Our assumptions in that work were that we knew the initial state, and

that the actions could be executed without error. That is a useful idealization in many cases, but

it is also very frequently false. Even navigation through a city can fail on both counts: sometimes

we don't know where we are on a map, and sometimes, due to tra�c or road work or bad driving,

we fail to execute a turn we had intended to take.

In such situations, we have some information about where we are: we can make observations of

our local surroundings, which give us useful information; and we know what actions we have taken

and the consequences those are likely to have on our location. So, the question is: how can we

take information from a sequence of actions and local observations and integrate it into some sort

of estimate of where we are? What form should that estimate take?

We'll consider a probabilistic approach to answering this question. We'll assume that, as you

navigate, you maintain a belief state which contains your best information about what state you're

in, which is represented as a probability distribution over all possible states. So, it might say that

you're sure you're somewhere in Boston, and you're pretty sure it's Storrow drive, but you don't

know whether you're past the Mass Ave bridge or not (of course, it will specify this all much more

precisely).

We'll start with some basic background on probability, and then talk about how to estimate an

underlying hidden state of a changing world, based on noisy and partial observations.

Probability

Probability theory is a calculus that allows us to assign numerical assessments of uncertainty to

possible events, and then do calculations with them in a way that preserves their meaning. (A

similar system that you might be more familiar with is algebra: you start with some facts that you

know, and the axioms of algebra allow you to make certain manipulations to your equations that

you know will preserve their truth).

The typical informal interpretation of probability statements is that they are long-term frequencies:

to say \the probability that this coin will come up heads when ipped is 0.5" is to say that, in the

long run, the proportion of ips that come up heads will be 0.5. This is known as the frequentist

interpretation of probability. But then, what does it mean to say \there is a 0.7 probability that it

will rain somewhere in Boston sometime on April 29, 2007"? How can we repeat that process a lot

of times, when there will only be one April 29, 2007? Another way to interpret probabilities is that
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they are measures of a person's (or robot's) degree of belief in the statement. This is sometimes

referred to as the Bayesian interpretation. In the Bayesian interpretation, you cannot be wrong

about your beliefs, but it is possible to be inconsistent (and, as it happens, if you are inconsistent,

you can be forced to lose in betting games).

So, studying and applying the axioms of probability will help us make true statements about long-

run frequencies and make consistent statements about our beliefs, by deriving sensible consequences

from initial assumptions.

We'll just consider the case of discrete sample spaces, so we'll let U be the universe or sample

space, which is a set of atomic events. An atomic event is just an outcome or a way the world

could be. It might be a die roll, or whether the robot is in a particular room, for example. Exactly

one (no more, no less) event in the sample space is guaranteed to occur; we'll say that the atomic

events are \mutually exclusive" (no two can happen at once) and \collectively exhaustive" (one of

them is guaranteed to happen).

An event is a subset of U. A probability measure P is a mapping from events to numbers that

satisfy the following axioms:

P(U) = 1

P({}) = 0

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

Or, in English:

• The probability that something will happen is 1.

• The probability that nothing will happen is 0.

• The probability that an atomic event in the set A or an atomic event in the set B will happen

is the probability that an atomic event of A will happen plus the probability that an atomic

event of B will happen, minus the probability that an atomic event that is in both A and B will

happen (because those events e�ectively got counted twice in the sum of P(A) and P(B)).

Armed with these axioms, we are prepared to do anything that can be done with discrete proba-

bility!

Random variables A discrete random variable is a discrete set of values, v1 . . . vn and a mapping

of those values to probabilities p1 . . . pn such that pi ∈ [0, 1] and
∑

i pi = 1. So, for instance, the

random variable associated with ipping a somewhat biased coin might be {heads : 0.6, tails : 0.4}.

In a world that is appropriately described with multiple random variables, the atomic event space

is the cartesian product of the value spaces of the variables. So, for example, consider two random

variables, C for cavity and A for toothache. If they can each take on the values T or F, then the

universe is

C×A = {(T, T), (T, F), (F, T), (F, F)} .

The joint distribution of a set of random variables is a function from elements of the product space

to probability values that sum to 1 over the whole space. So, for example, consider the following

table:

C

T F

A
T 0.05 0.05 0.1

F 0.1 0.8 0.9

0.15 0.85
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The bold entries in the table make up the joint probability distribution. They are assignments of

probability values to atomic events, which are complete speci�cations of the values of all of the

random variables. For example, P(C = T,A = F) = 0.1; that is, the probability of the atomic event

that random variable C has value T and and random variable A has value F is 0.1. Other events

can be made up of the union of these primitive events, and speci�ed by the assignments of values

to only some of the variables. So, for instance, the event A = T is really a set of primitive events:

{(A = T, C = F), (A = T, C = T)}, which means that

P(A = T) = P(A = T, C = T) + P(A = T, C = F) ,

which is just the sum of the row in the table.

The rightmost column of numbers and the bottommost row of numbers are the marginal prob-

ability distributions of the individual random variables. So, for example, we can see from the

marginals that P(A = T) = 0.1, and that P(C = T) = 0.15. Although you can compute the

marginal distributions from the joint distribution, you cannot in general compute the joint
distribution from the marginal distribution!!.

In the very special case when two random variables A and B do not inuence one another, we

say that they are independent, which is mathematically de�ned as

P(A = a, B = b) = P(A = a)P(B = b) .

If we only knew the marginals of toothaches and cavities, and assumed they were independent, we

would �nd that P(C = T,A = T) = 0.015, which is much less than the value in our table. This is

because, although cavity and toothache are relatively rare events, they are highly dependent.

One more important idea is conditional probability, where we ask the probability of some event

E1, assuming that some other event E2 is true; we do this by restricting our attention to the part

of the sample space in E2. The conditional probability is the amount of the sample space that is

both in E1 and E2, divided by the amount in E2:

P(E1|E2) =
P(E1, E2)

P(E2)
.

So, if a patient walks into your dental practice saying that she has a toothache, what's the proba-

bility she has a cavity? That is the conditional probability of C = T given A = T (we already know

the value of A, so our only uncertainty is about C).

P(C = T |A = T) =
P(C = T,A = T)

P(A = T)

=
0.05

0.1
= 0.5

So, although a cavity is relatively unlikely, it becomes much more likely conditioned on knowing

that the person has a toothache.

Bayes’s Rule Sometimes, for medical diagnosis or characterizing the quality of a sensor, it's

easiest to measure conditional probabilities of the form P(symptom = T |disease = T), indicating

in what proportion of diseased patients a particular symptom shows up. (These numbers are often
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more useful, because they tend to be the same everywhere, even though the proportion of the

population that has disease may di�er.) But in these cases, we really want to know P(disease =

T |symptom = T). We can use the de�nition of conditional probability in a form that is known as

Bayes's Rule to get this:

P(disease = T |symptom = T) =
P(symptom = T |disease = T)P(disease = T)

P(symptom = T)
.

This rule is often very useful, and can easily be veri�ed (note that the de�nition of conditional

probability is applied to both sides of the equation in the �rst step):

P(E1|E2) =
P(E2|E1)P(E1)

P(E2)

P(E1, E2)

P(E2)
=

P(E2, E1)P(E1)

P(E1)P(E2)

=
P(E2, E1)

P(E2)

State estimation

So, now, let's consider the application of interest: there is a system moving through some sequence

of states over time, but instead of getting to see the states, we only get to make a sequence of

observations of the system. The question is: what can we infer about the current state of the

system give the history of observations we have made?

As a very simple example, let's consider a copy machine: we'll model it in terms of two possible

internal states: good and bad. But since we don't get to see inside the machine, we can only make

observations of the copies it generates; they can either be perfect, smudged, or all black.

We can model this problem as a hidden Markov model (HMM). These models are called \hidden"

because the internal state of the system is not fully or reliably observable, and \Markov" because

our description of the state of the machine contains all the information that we could possibly use

to make predictions about how it will behave in the future (there is no point in trying to remember

its history of states, for example).

In an HMM we model time a discrete sequence of steps, and we can think about the state and

the observation at each step. So, we'll use random variables S0, S1, S2, . . . to model the state at

each time step and random variables O1, O2, . . . to model the observation at each time step. Our

problem will be to compute the state at some current time t given the past history of observations;

that is, to compute

P(St|O1 . . . Ot) .

A hidden Markov model makes a strong assumption about the system: that the state at time t is

su�cient to determine the probability distribution over the observation at time t and the state at

time t + 1. Furthermore, we assume that the way the state at time 3 depends on the state at time

2 is the same way that the state at time 2 depends on the state at time 1, and so on; similarly for

the observations.

So, in order to specify our model of how this system works, we need to provide three sets of

probability distributions:
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0.9 0.1

good bad

P(S0 = s)

s
0.7 0.3

0.1 0.9

good bad

P(St+1 = s|St = good)

s

P(St+1 = s|St = bad)

0.8 0.1

0.1 0.7 0.2

0.1

perfect smudge black

P(Ot = o|St = bad)

P(Ot = o|St = good)

o

Initial state distribution State transition model

Observation model

Figure 1: An HMM model of the copy-machine diagnosis problem.

Initial state distribution: We need to have some idea of the state that the machine will be in at

the very �rst step of time that we're modeling. This is often also called the prior distribution

on the state. We'll write it as

P(S0 = s) .

It will be a collection of probability values, one for each possible state s, that sum to 1.

State transition model: Next, we need to specify how the state of the system will change over

time. We do that by considering each possible state, st, that the system could be in at time

t, and then writing down the conditional probability distribution over St+1,

P(St+1 = st+1|St = st) ,

which speci�es for each possible new state, st+1, how likely it will be, given that the system

was in state st on the time step before.

Observation model: Finally, we need to specify how the observations we make of the system

depend on the underlying state. This is often also called the sensor model. We specify it by

considering each possible value, st, that the system could be in at time t, and then writing

down the conditional probability distribution

P(Ot = ot|St = st) ,

which speci�es for each possible observation ot, how likely it will be, given that the system

is currently in state st.

Copy machine example

Figure 1 shows an HMM model for the copy-machine diagnosis problem. Note that the state

transition model and the observation model consist of a set of conditional distributions; each one is

represented by a separate row, conditioned on the current state. The numbers in each distribution

must, as always, add up to 1.
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0.9 0.1

good bad

0.64 0.36

0.7 0.1

transition
probabilities

0.9 0.1

good bad

0.64 0.36

0.3 0.9P(S1 = s1|S0 = s0)

P(S0 = s0)

P(S1 = s1)

s0 s0

s1 s1

Figure 2: Schematic version of �rst transition update

Our first copy So, now, let's assume we get a brand new copy machine in the mail, and we

think it is probably (0.9) good, but we're not entirely sure. We print out a page, and it looks

perfect. Yay! Now, what do we believe about the state of the machine? We'd like to compute

P(S1 = good|O1 = perfect). We'll do this in two steps. First we'll consider how the machine might

have changed from time step 0 to 1, and then we'll consider what information we have gained from

the observation.

So, we'll start by thinking about P(S1 = good), imagining that we haven't yet seen the �rst printout

(or that some annoying o�ce-mate took it by mistake). We'll start by realizing that the machine

could be in a good state now either because it was in a good state before and stayed good, or

because it was in a bad state before, and magically repaired itself (ha!):

P(S1 = good) = P(S1 = good, S0 = good) + P(S1 = good, S0 = bad) .

Now, our model doesn't give us the probability of the state at one step and the state at the next

step; but we can use the de�nition of conditional probability to rewrite P(E1, E2) = P(E1|E2)P(E2) ,

which lets us write

P(S1 = good) = P(S1 = good|S0 = good)P(S0 = good) + P(S1 = good|S0 = bad)P(S0 = bad) .

Cool! We know those values! The conditional probabilities come from our sensor model and the

the others from our prior. So

P(S1 = good) = 0.7 · 0.9 + 0.1 · 0.1

= 0.64

Hmm. So, according to our transition model, these copy machines disintegrate pretty quickly!

Without any new observations, we think that after the �rst time step, the machine only has

probability 0.64 of being good.

Figure 2 shows a schematic version of this update rule, which is a good way to think about

computing it either by hand or in a computer. To compute an entry in the distribution P(S1 = s1),

you take each element so in P(S0 = so) and multiply it by the transition probability P(S1 = s1|S0 =

so), and then sum the results.
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0.64 0.36

good bad

.512 .036

0.8 0.1

.934 .066

normalize divide by 0.548

P(S1 = s1)

s1

P(O1 = perfect|S1 = s1)

P(S1 = s1|O1 = perfect)

Figure 3: Schematic version of �rst observation update

Now it's time to take advantage of the information that it printed a perfect copy. We can use

Bayes's rule to get:

P(S1 = good|O1 = perfect) =
P(O1 = perfect|S1 = good)P(S1 = good)

P(O1 = perfect)
.

We know both of the terms in the numerator: one is the sensor model and the other is the value

we just computed. But what is P(O1 = perfect)? We can derive it in a way similar to that shown

above, reducing it to values that we've already calculated, or that we have in our sensor model.

P(O1 = perfect) = P(O1 = perfect, S1 = good) + P(O1 = perfect, S1 = bad)

= P(O1 = perfect|S1 = good)P(S1 = good) + P(O1 = perfect|S1 = bad)P(S1 = bad)

= 0.8 · 0.64 + 0.1 · 0.36

= 0.548

Now we can go back to our Bayes's rule expression:

P(S1 = good|O1 = perfect) =
P(O1 = perfect|S1 = good)P(S1 = good)

P(O1 = perfect)

=
0.8 · 0.64

0.548
= 0.9343

Figure 3 shows a schematic version of this update rule, which is a good way to think about

computing it either by hand or in a computer. To compute an entry in the distribution P(S1 =

s1|O1 = perfect), you take each element s1 in P(S0 = s1) and multiply it by the observation

probability P(O1 = perfect|S1 = s1). Then, you need to normalize the distribution so that it sums

to 1; so you divide each value by the sum of all the values.

Whew! After all that, we believe our copy machine more likely to be in a good state, than we did

when we got it out of the box.
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.661 .339

.066 .238

0.1 0.7

.218 .782

divide by .304 

P(S1 = s1|O1 = perfect) .934 .066

good bad

0.7 0.1

P(S2 = s2|O1 = perfect)

P(O2 = smudged|S2 = s2)

P(S2 = s2|O1 = perfect,O2 = smudged)

P(S2 = s2|S1 = s1)

Figure 4: Schematic version of second transition and observation update

Our second copy Now, let's imagine we print another page, and it's smudged. We want to

compute P(S2 = good|O1 = perfect, O2 = smudged). Rather than writing out all the algebra

again, we'll just do it in our schematic form, with both steps as shown in �gure 4.

Ow. Now we're pretty sure our copy machine is no good. Planned obsolescence strikes again!

General state estimation

Finally, we'll write out the state-update procedure for a general situation. Let bt be the belief

state at time t, after incorporating actual observations o1, . . . , ot:

bt(s) = P(St = s|O1 = o1 . . . Ot = ot) .

Then we proceed in two steps:

Transition update :

b ′
t+1(st+1) = P(St+1 = st+1|O1 = o1 . . . Ot = ot) =

∑
st

P(St+1 = st+1|St = st)bt(st) .

Observation update, given ot+1 :

bt+1(st+1) = P(St+1 = st+1|O1 = o1 . . . Ot+1 = ot+1) =
P(Ot+1 = ot+1|St+1 = st+1)b

′
t+1(st+1)∑

sj
P(Ot+1 = ot+1|St+1 = sj)b

′
t+1(sj)

.
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A very important thing to see about these de�nitions is that they enable us to build what is known

as a recursive state estimator. (Unfortunately, this is a di�erent use of the term \recursive" than

we're used to from programming languages). It means that, after each action and observation, we

can update our belief state, to get a new bt(s). Then, we can forget the particular action and

observation we had, and just use the bt(s), at, and ot+1 to compute bt+1(s).

Bigram model of 6.01

The machine could be made up the copies it becomes much less than were not (of course, it

generates; they are assignments of �rst printout (or robots) degree of �rst step before.

Now were used to think about your beliefs, but you take advantage of two steps. First well model

and the state at each time 2 is that the axioms of the state at some idea is both A has a sensor,

its Storrow drive, but were modeling. This is a sensor, its easiest to see about what actions we

have in P(S0 = F) , So, for example. Exactly one April 29, 2007? Another way to have taken

and Computer Science 6.01Introduction to 1. Finally, well consider the joint distribution of atomic

event A

Figure 3 shows a good way the copy-machine diagnosis or F, then writing down the state at time

3 depends on the equation in English:

The rightmost column of probability values that nothing will happen, minus the probability dis-

tribution P(S1 = T, C has a discrete sample space is just an atomic event of this in state of

observations; that the information that weve already calculated, or reliably observable, and multi-

ply it to lose in E2:

st on a cavity and bad. But since we have changed from some sequence of atomic event of the

Bayesian interpretation. In the Bayesian interpretation. In such situations, we proceed in at time

t, after incorporating actual observations we can either because it is currently in a copy Now, what

information that an HMM model consist of estimate take?

P(St|O1 ...Ot) .

We know whether the person has a good state space, and sometimes, due to occur; well start with

both steps as a separate row, conditioned on the random variables. So, although cavity and we

knew the joint distribution so our model and toothache are called hidden because the state. The

rightmost column of the term recursive than were used to say that satisfy the distribution from the

value in trying to that shown above, reducing it is a function from our copy machines disintegrate

pretty sure its Storrow drive, but instead of the initial assumptions.

So, for medical diagnosis problem. Note that we print another page, and speci�ed by thinking about

the Bayesian interpretation, you can we have changed from time t + 0.1 0.1 0.548 = good|O1

= T) The probability P(S1 = perfect|S1 = so), and then talk about our model time t and the

random variables. So, studying and a bad state at time step. So, for cavity and the random

variables. So, the amount of the Bayesian interpretation, you maintain a collection of random

variables O1,O2,... to rewrite P(E1,E2)= P(E1|E2)P(E2) , P(A = o1 ...Ot = s|O1 = F), (A

similar to estimate of B will only knew the observation at time 2 depends on the joint distribution

over time. We know what proportion of the assignments of Electrical Engineering and the sum of

numbers that the quality of values that nothing will only some current time t, after the numerator:

one another, we are the very �rst transition model: Next, we can we believe our model the very

useful, because it mean to measure P is a city can use for medical diagnosis problem.
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P(E2|E1)P(E1)

P(E1|E2)

which give us useful idealization in state of interest: there is often very frequently false. Even

navigation through some annoying o�ce-mate took it looks perfect. Yay! Now, lets consider the

time that is a good state, st+1, how it in the others from the cartesian product of the state at time

step, the atomic events e�ectively got counted twice in a form that an underlying state. Well just

the marginal distributions from our Bayess rule to specify our sensor model. 0.8 0.9 + 0.1 = bad)

Well start with them in state of the belief state, that is represented as always, add up heads when

there is a city can model consist of them is about how this system will be the state at one (no two

possible state of the machine, we take advantage of them in E1 and then sum of actions and then

do anything that they can easily be inconsistent (and, as P(S0 = T is in the algebra again, well let

U be 0.5. This is much less than we believe our description of those are measures of belief state

which lets us write

Observation update, given A 0.05 0.8 0.36

The probability P(O1 = st+1)b(st+1)

bt+1(st+1)= P(St+1 = good|O1 = T, C = s1) and assumed they enable us the variables. For

example, lets consider a toothache. If they can each possible to specify how the system that shown

above, reducing it is currently in at each action and toothache are highly dependent.

General state of the next step; but were modeling. This is probably (0.9) good, but it will be

inconsistent (and, as the random variables. For example, consider a page, and multiply it might

say that satisfy the initial assumptions.

P(E1, E2)

Figure 3 depends on the copy-machine diagnosis problem.

So, well use the joint distribution must, as a set A = perfect). Well consider the equation in our

beliefs, but we believe about computing it into your beliefs, but it mean to say that the current

state. The numbers are mutually exclusive (no more, no less) event is true; we only make of

these cases, we assume that something will be a die roll, or all possible to a new observations, we

are: we say that the marginal probability values T or road work or characterizing the frequentist

interpretation of this in the state at time a schematic version that they can easily be in E2. The

joint distribution on both A discrete probability!

... and, yes, the text in this section is generated randomly by using a bigram model of the real

class notes. The model uses the transition probabilities between words (conditional probability of a

word given the preceding word) measured by counting how many times each word follows another

word in the class notes and then normalizing so that the probabilities sum to one.


