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MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.01—Introduction to EECS I
Spring Semester, 2008

Work for Week 12, Issued Tuesday, April 29

Overview of this week’s work

In software lab

• Work through the software lab.

Before the start of your design lab on May 1 or 2

• Read the class notes and review the lecture handout.
• Do the on-line tutor problems in section 12.1.
• Read the entire description of the design lab, so that you will be ready to work on it when you

get to lab.

In design lab

• Do the nano-quiz.
• Work through the design lab.

Before the beginning of your next software lab on May 6 or 7

• Do the on-line tutor problems in section 12.2.
• Submit written solutions to questions 2—9, 13, 14, and 15. All written work must conform to

the homework guidelines on the web page.

Note: Exploration is due on Thursday May 8!!! That is the last legal due date.

Do athrun 6.01 update to get a directory lab12 that contains the relevant files. In order
to do this entire lab, it will also be important to have the latest version of SoaR. Athena
machines and lab laptops will update automatically; to update your laptop, please download
a new version of SoaR from the 6.01 software page.
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Software Lab: State estimation part 1

In the next two software labs, we’ll use basic probabilistic modeling to build a system that estimates
the robot’s pose, based on noisy sonar and odometry readings. We’ll start by building up your
intuition for these ideas in a simple simulated world, then we’ll move on to using the real robots,
next week.

This week we’ll start by working with a non-deterministic grid-world simulator. You should work
with a partner on this.

Don’t use the Idle Python Shell for this lab. You can use the Idle editor, but you cannot
run the code from inside Idle.

In the lab12 folder you will find se.py. Open this file in Idle, but do not try to evaluate the
Python commands in the Idle Python Shell.

Then, open a Terminal window (if you’re on Athena, remember to do add -f 6.01), and connect
to the lab12 directory

cd ~/ Desktop /6.01/ lab12

and type python.

> python

Python 2.5 (r25 :51918 , Sep 19 2006, 08:49:13)

[GCC 4.0.1 (Apple Computer , Inc. build 5341)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

If you are using your own laptop, download the lab12 files from the calendar page on the web. If
don’t know how to do the operations above on your own computer, then you can start Python, and
type

>>> import os

>>> os.chdir(’wherever\you\store\your\lab12\files ’)

And continue as follows.

In this Python, type

>>> import se

>>> from se import *

As the lab goes along, if you edit se.py, then you’ll need to go back to this window and type

>>> reload(se)

And if you define a new name in se.py, you’ll have to do

>>> from se import *

again as well.

You’ll see a set of procedures at the end of the se.py file, which will make example worlds of
different kinds. We’ll start by working with the world defined by make51p (which stands for 5 by
1, perfect). In your Python (not Idle) shell, type

>>> w = make51p ()
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As a result, you should see a window that looks like this:

This is a world with 5 possible “states”, each of which is represented as a colored square (on the
left). The possible colors of the states are white, black, red, green, and blue. In this example, four
squares are white and one is green. There is a small orange rectangle representing the square that
our simulated robot is actually occupying. On the right are five squares that start out being black;
the color in those squares represents how likely the robot thinks it is that it’s in that square. This
is called the belief state. The colors illustrating the belief state are: black, when the value is what
the uniform distribution would assign (0.2 for 5 states), shades of green when the probability is
higher than the uniform, and shades of red when it is below the uniform value.

The arguments to the makeGridSim function are:

• The dimension of the world in x
• The dimension of the world in y
• Four lists of coordinates, each specifying the location of colored squares. The first list gives the

locations of black squares, the second red, the third green, the last blue. Squares unspecified in
any of those lists are white.

• A pair of indices specifying the robot’s initial location
• A model of how the sensors work
• A model of how the actions work

So, this grid world is 5-by-1, with one green square, the robot initially at location (0,0), and perfect
sensor and motion models.

You can issue commands to the robot by typing:

w.run()

and responding to the text prompts. Typing done returns control to Python, but the window will
remain. Do not kill the window until you are completely done with it. You can type:

w.reset()

w.run()

to start interacting with the window again after you’ve typed done.

The state of the system is described with two integers, which are the discrete x and y coordinates
of the robot’s actual location in the world. The robot doesn’t have access to this information
though; all it gets to do is make an observation of the color of the room it is in. When the world
is created, and after every step, it prints out the “belief” distribution over the array of possible
robot locations. Then, it prints out what observation the robot actually makes of its world (if the
observation function is probabilistic then the robot might observe “red” even if it is standing in a
square that is white). Finally, it prompts you for an action that the robot should try to take. The
simulator executes that action (using the motion model in the world, which may be stochastic),
updates the hidden state of the world (the robot’s location), and generates a new observation.
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Question 1: To get the idea of how this works, move the robot east few times. Write down the
numerical values associated with the robot’s belief that it is in each of the squares. Give a
qualitative explanation for how the belief evolves. You should be able to relate this, at least
roughly, to the HMM example in the notes.

This model is a slight variation on a hidden Markov models (HMM) that we saw during lecture.
The only difference is that the robot can select different actions (like trying to move north or trying
to move south), and those different actions will cause different state-transition distributions.

The sensor model, generally speaking, is supposed to specify a probability distribution over
what the robot sees given what state it is in: P(Ot = ot|St = st). In our case ot ranges over white,
black, red, green, and blue, and st ranges over all the possible states of the robot (the different grid
squares).

We have made a simplifying assumption, which is that the robot’s observation only depends on
the color of the square it’s standing in; that is, all white squares have the same distribution over
possible observations. So, we really only need to specify P(observedColor|actualColor), and then
we can find the probability of observing each color in each state, just by knowing the actual color
of each state:

P(Ot = observedColor|St = st) = P(Ot = observedColor|actualColor(st)) .

In our program, we specify the observation model by a function which takes as input the trueColor
and returns an instance of the Dist class. The Dist class specifies a probability distribution over
a set of values as a list of [value, probability] pairs. The probabilities must sum to one. Any
possible value that is not mentioned in the distribution is assumed to have probability equal to 0.0.

Here’s the model for perfect observations, with no probability of error:

def perfectSensorModel(trueColor ):

return Dist ([[ trueColor , 1.0]])

Note that, since there is no error, there is only one entry in the distribution, whose probability is
1.0.

The input to the sensor model function is an integer denoting the color. The mapping between
integers and colors are the following dictionaries defined in se.py:

colors = {0: ’white ’, 1: ’black ’, 2: ’red’, 3:’green ’, 4:’blue’}

inverseColors = {’white’:0, ’black’:1, ’red’:2, ’green’:3, ’blue’:4}
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Question 2: Give a sensor model in which red and blue are indistinguishable (that is, the robot
is just as likely to see red as to see blue when it is in a red square or a blue square).

Question 3: Give a sensor model in which red always looks blue, and blue always looks red.

Question 4: Modify the test world w so that it has only blue and red squares. Try out your
sensor models above and see what happens to the belief state. Which one of these models
is more informative? Justify your answer based on your experiments.

Question 5: Define a sensor model (call it noisySensorModel) in which the trueColor has
probability of 0.8 and there is a probability of 0.2 of seeing one of the remaining colors
(equally likely which other color you see).

Question 6: Given an example situation in which our assumption (that all squares of a given
color have the same error model) is unwarranted.

In a real-world system we probably wouldn’t ever want to have zeros anywhere in the sensor model:
it is important to concede the possibility of error.

The state-transition model specifies a probability distribution over the state at time t + 1,
given the state at time t and the selected action a. That is, P(St+1 = st+1|St = st, At = at).
This is a slight generalization of the HMM model we saw in class, since it assumes that there is an
“agent” in the world that is choosing actions; the effects of the action are modeled by essentially
selecting a different transition model depending on the action. So, the next state of the system
depends both on where it was before and the action that was taken. If you were to write this model
out as a matrix, it would be very big: mn2, where n is the number of states of the world and m is
the number of actions.

Often, the transition model can be described more sparsely or systematically. In this particular
world, the robot can try to move north, south, east, or west, or to stay in its current location. We’ll
assume that the kinds of errors the robot makes when it tries to move in a given direction don’t
depend on where the robot actually is (except if it is at the edge of the world), and we’ll further
assume that the transition probabilities to most next states are zero (there’s no chance of the robot
teleporting to the other side of the room, for example).

In this simulator, a motion model is a function that takes the robot’s current x, y coordinates,
an action, which is specified as a set of x, y offsets (so the action to move north would be 0, 1,
for example), and the dimensions of the world. It returns an instance of Dist that specifies a
probability distribution over the possible next states, which is specified by lists of pairs of robot
locations and the probability of moving to that state.

Here is a motion model with no noise. There is only one possible resulting state, in which coordinates
of the action are added to those of the robot, and then the result is clipped to be sure it stays
within the confines of the world.
def perfectMotionModel ((rx , ry), (ax , ay), (xmax , ymax )):

def cx(a): return clip(a, 0, xmax -1)

def cy(a): return clip(a, 0, ymax -1)

return Dist ([[[cx(rx+ax),cy(ry+ay)], 1.0]])

Note that this is written for the general case of a two-dimensional grid even though our example
right now is one dimensional.
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Question 7: Write a motion model for a world that is a torus (that is, the surface of a donut.
There’s no “edge” in this world, the surface wraps around to the other side) and where
motion is deterministic. Make sure that your motion model works on two-dimensional
worlds.

Test your motion model in a 5 x 5 world such as the one defined by make55 in se.py. Select
test cases that demonstrate the necessary features of the motion model. Show the input
and output for calls to your motion model function. Explain.

Question 8: Write the “east wind” motion model, in which, with probability 0.1, the robot
always lands one square to the west of where it should have landed in the torus model.
Make sure that you do this so that it works on two-dimensional worlds.

Provide test cases as described in problem 7.

Question 9: Define your own noisy two-dimensional motion model, implement it and test it (as
described in problem 7). Make sure you also provide an English description of the behavior.
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Final Project : Part 1: Seek the Light

For the final project, we want to be able to build a brain that can lead the robot to a light
somewhere in a maze. We will assume that we know the map for the maze but are starting from
an unknown location; we will also assume that the robot knows several candidate locations for the
lights. Developing the software to localize the robot relative to the map and traverse the maze will
be the subject of next week’s lab. This week, we will focus on the light finding.

In Lab 10, you built a software controller for the robot head running from Python and doing input
and output through the NIDAQ box. This week we will integrate that into SoaR. We will be using
the terminating sequential machine framework that we have seen several times (Labs 4 and 11 and
the midterm). This will enable us to combine the light-finding behaviors more readily with the
planning and execution behaviors that we explored in last week’s lab.

By the end of this lab, we would like your robot to be able to exhibit the following behavior:

• It drives around the world in a square;
• When it reaches one of the corners of the square, it rotates 360 degrees;
• During the time that it is rotating, if the light in either of its photosensors is above some

threshold, it begins following the light, with both its head and its body; and
• When it comes very close to the light, it stops.

A head on your shoulders

The circuits needed for this lab are a basic version of we built in lab 10. Because
we are changing partners and many heads were left with a random assortment
of useful and non-useful circuitry, we’re starting them all fresh.

Following is a schematic that will provide:

• Wiring to the NIDAQ inputs so that you can read the voltage drop across each of your photo-
sensors, and the neck potentiometer.

• Wiring to the NIDAQ output to set the voltage on one terminal of your motor, with a buffer
to provide enough current.

• The other terminal of the motor connected to a buffered voltage of approximately 5V.

You will need to interface your circuit to the NIDAQ box on your robot and you will need to get
power from the robot’s battery.
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You will be plugging in the blue wire on top of your robot into the 8-pin “Jack for Robot Power”
shown in the figure above. Note that the jack for connecting the motor has 6 pins; there’s a different
jack with 8 pins that you need here. If you don’t have such a jack on your protoboard, please find
one in the lab and insert it into your board. You will need to move the jack forward from where it
is shown in the figure so you can connect wires to the pins.

You need to make the following connections to the pins of this jack:

Pin 1: AO0 on NIDAQ - connect to your motor via an op-amp buffer

Pin 2: AO1 on NIDAQ - leave disconnected

Pin 3: AI5 on NIDAQ - connect to the neck pot (Potentiometer 2)

Pin 4: AI6 on NIDAQ - connect to one photo-sensor divider

Pin 5: AI7 on NIDAQ - connect to one photo-sensor divider

Pin 6: AI4 on NIDAQ - leave disconnected

Pin 7: GND from robot - connect to ground rail on your board

Pin 8: +12V from robot - connect to the power rail on your board. This will supply all your
power. Note that the voltage from the robot is often closer to +13V. This shouldn’t
present too much of a problem, but you should measure it, so you know whether
your dividers are working; and you may need to correct, in software, for the fact
that your virtual ground is not exactly 5V.
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Please build this circuit on your board.
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Question 10: What will be the minimum and maximum voltages into pin 3 if Vcc is 13?

Affix your head to the front of your robot by gently pushing the base of the head onto the gray
Lego plate on top of the robot. Make sure that your robot is turned off. Plug in the blue
wire with a telephone connector on top of your robot into the RJ11 jack.

Warning: When you power on your robot, your circuit will have power. If your NIDAQ
box’s output is 0, then your head motor will have a voltage drop of 5V across it, so
it will smash itself against one of the stops and continue pushing as hard as it can.
Since the resistance of the motor is 5 Ohms and you are commanding 5 Volts, your
poor op-amp is pumping 1 Amp into the motor, therefore the op-amp will get very
hot, melt the board and eventually burn out. Sometimes the failure can be dramatic
(a pop, a cloud of smoke and the horrible smell of burning plastic).

So, PLEASE disconnect the cable from your circuit to the motor until you have your
controller running and have determined that you have a sensible voltage (near 5V)
commanded from your NIDAQ. You can see the commanded voltages in the NIDAQ
server window, by printing them from your software, and by measuring them on the
board with a multimeter.
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Question 11: Verify that your board is set up properly:

a. Open a Terminal window, connect to the lab12 folder and start the NIDAQ server:

cd ~/ Desktop/lab12/designlab/

./ NIDAQserver --output

b. Start Idle and load the file test12.py. Do readTest() while you shine a light on and
off the photo-sensors. Measure and record the range of voltages on the photo-sensors
when (a) there is no bright light near, (b) there is a bright light a few feet away and
(c) the light is about a foot away. The robot needs to be powered up for your circuit
to work.
Make sure you can read the neck potentiometer, and that the readings are sensible.

c. Make sure that your motor cable is disconnected. Use a multimeter to measure
that you have 5V on one of the terminals of the motor jack. Run writeTest() and use
your multimeter to verify that the output of the op-amp driving the other terminal of
the motor has the voltages that are being written.

Checkpoint 1: 45 minutes

• Find a staff member and show them your head mounted on the robot, with the wiring
to the jack from your board and with the wire to the motor disconnected. Show that
you can read the photo-sensors and neck potentiometer, and that you can command
a voltage to the motor terminals.

A brain for your head

We now want to write a SoaR brain to control the head. We want to do this in SoaR because
we will want to move the robot in response to what the head is sensing. Since we will want to
combine this functionality with the planning behaviors we did last week, we are going to structure
the controller as another TSM (terminating state machine).

Look in the file lightBrain.py for a skeleton for you to fill in with the controller. Note that we
have extended the input/output interface for behaviors to include the inputs and outputs available
on the NIDAQ. The file io.py implements the new interface.

So, the input to terminating state machines serving as robot behaviors is an instance of the class
SensorInput which has three variables, sonars, odometry (this is the robot pose) and nidaqInputs
which are the neck pot voltage and the two eye voltages. The output of these state machines should
be an instance of the class Action which specifies the robot’s forward velocity, rotational velocity
and the voltage for the NIDAQ AO0 (the head motor). Note that these arguments default to
reasonable values if not specified, which allows us to write behaviors for controlling the wheels that
are independent of whether or not we are also controlling the head (and vice versa).
class SensorInput:

def __init__(self):

self.sonars = sonarDistances ()

self.odometry = pose()

if useNidaq:

self.nidaqInputs = readNIDAQInputs ()
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referenceVoltage = 5.0

class Action:

def __init__(self , fvel = 0.0, rvel = 0.0,

voltage = referenceVoltage ):

self.fvel = fvel

self.rvel = rvel

self.voltage = voltage

def doAction(a):

if useNidaq:

writeNIDAQ(a.voltage)

motorOutput(a.fvel , a.rvel)

The TSM classes RotateTSM and ForwardTSM in lightBrain.py illustrate the use of this interface.

def start(self , input):

(x, y, theta) = input.odometry

...

def currentOutput(self):

return Action(rvel = self.rotationalGain * ...)

Question 12: Fill in the trackLightTSM class so that it has the required TSM methods
( init , start, step, currentOutput, done) and it implements a light tracker sim-
ilar to the one you did in Lab 10. (Note that in this slightly revised TSM class, the start
method plays the same role as the reset method from early in the semester.) It should take
the input from the photo-sensors and compute a voltage command for the robot. Pick a gain
so that the head is quick but does not oscillate. Assume for now that this behavior never
terminates. Debug this behavior running within SoaR. Use your multimeter to make
sure that the behavior produces sensible voltage commands before connecting
the motor cable.

Question 13: Extend your class definition so that it moves the robot to follow the light. The
robot should turn in the direction that the head is pointing and should move towards the
light. Have the robot stop moving forward (but do not terminate) when the light gets to
the brightness that means that the light is about a foot away. You can debug this in the
simulator without actually running the robot; if you have the robot powered up, so that
your head circuit has power, the simulated robot should respond as desired. (Alternatively,
you can rock the robot back so that its wheels are off the ground, and check visually to see
if it’s turning in the right direction, before running it around.) After your behavior works
in the simulator, get it to work on the real robot. Hand in your definition of the completed
trackLightTSM class and an explanation of how it works. Describe your testing.

Checkpoint 2: 90 minutes

• Demonstrate your robot following a light. Its head should track the light quickly and
its body should follow.
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A scanner brightly

When the robot gets to one of the locations where a light could be, it should execute a behavior
that scans for a light. If a light is detected, the robot should track the light until the desired
brightness is reached. The robot should stop but the behavior should not terminate. If no light
is detected after a full scan, the behavior should terminate (so that subsequent behaviors can take
over).

One simple possibility for scanning is to have the robot rotate in place, testing for a bright enough
light; we can do this using one or more calls to RotateTSM. Another possibility is to scan the head
(by turning through a series of intermediate positions), but because the head can turn a total of
less than 180 degrees, we could miss the light if it is behind the robot. A combination of body and
head scanning is also possible.

In constructing your scanning behavior, you should use the TSM combination classes, defined in
TSMFull.py. In particular:

• SequentialTSM(list of TSMs) - takes a list of TSMs and executes them in order until each
is done.

• IfTSM(condition, sm1, sm2) - takes a condition (a function) that is given the inputs and
returns a boolean and executes sm1 or sm2 depending on whether the returned value is True
or False. Note that this test happens at every step of the resulting machine, so the IfTSM
machine will step one behavior or the other depending on the value of the condition.

• RepeatTSM(sm, n) - will execute sm until it is done a total of n times. If n is not given, it
will execute it forever.

Each of these combinations produces a TSM so they can be combined arbitrarily.

Question 14: Define the top-level behavior in lightBrain.py (robot.behavior) to scan for a
light and either terminate when there is no light or track (and not terminate) when there is
one. Hand in your behavior definition and an explanation of how it works.

Question 15: Extend the behavior so that it moves in a square and scans for lights at each
of the corners of the square. You might find ForwardTSM useful. Hand in your behavior
definition and an explanation of how it works. Describe your testing.

Checkpoint 3: End of lab

• Demonstrate your robot scanning for a light over a square and show two outcomes:
(a) giving up because it does not find a light and (b) finding a light, tracking it and
stopping when close enough.
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Exploration: Due Thursday May 8

This is worth 5 out of 10 exploration points

State estimator

Implement a completely generic state estimator as a Python class. The initialization function
should take as arguments:

• A list of the possible states in your domain.
• An initial state distribution, which is a function that consumes a state s and returns P(S0 = s).
• A transition model, which is a function that consumes a state st, an action a, and another state

st+1, and returns P(St+1 = st+1|St = st, At = at)

• An observation model, which is a function that consumes a state st and an observation ot, and
returns P(Ot = ot|St = st).

Your class should have methods that:

• update the belief state based on an action
• update the belief state based on an observation
• print out the belief state
• take a list of actions, a0, . . . , at, and observations, o1, . . . , ot, and return

P(St = st|A0 = a0, . . . , At = at, O1 = o1, . . . , Ot = ot) ; .

Exploration 1: Debug your code by working through the first two steps of the copy-machine
diagnosis problem from class. Include a printout showing that it works.

Exploration 2: Extend the copy-machine model so that there are two actions, print and main-
tain. Assume that the model we specified was for the print action. Provide a model for the
maintain action, which will tend to improve the state of the printer, and print out a test
page. Make up a couple of interesting action and observation sequences and show the belief
state that results afterwards. Argue whether it’s reasonable.

Diagnosing Pneumonia

This is worth 5 out of 10 exploration points

Systems that estimate the hidden state of a process are used in a wide variety of applications. One
interesting one is in the management of ventilators (active breathing systems) for intensive-care
patients. One aspect of that problem is that such patients are susceptible to pneumonia, but it is
difficult to diagnose based on a single temporal snapshot of the patient’s vital signs, blood gasses,
etc. Of course, the real process, and the models used, are very complicated. But let’s consider a
wildly oversimplified version below.1

1This problem was inspired by the paper “A Dynamic Bayesian Network for Diagnosing Ventilator-Associated
Pneumonia in ICU Patients,” by Charitos, van der Gaag, Visscher, Schurink, and Lucas, 2005; but the authors
should in no way be held responsible for the ridiculous simplifications we’ve made in the following.
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Let the possible states of the patient be: free of bacteria, colonized by bacteria, or pneumonia
from bacteria. (Assume these states are mutually exclusive and exhaustive: every patient is in ex-
actly one of them). In this model, there are no actions; it is used just for diagnosis, but not planning.
And let the observations (symptoms) be described by the following observation variables:

• abnormal temperature (yes, no)
• abnormal blood gas (yes, no)
• bacteria in sputum (yes, no)

(There are a huge number of other variables that could be relevant: many other signs and symptoms,
age and general health of the patient, which particular hospital they’re in, how long they’ve been
on a ventilator, what drugs they are on, why they’re in the ICU, etc. A big part of building such
a model is deciding which of these variables are likely to be important).

Given these three observation variables, there are 8 possible observations (because each variable
could be either true or false). You can, if it seems justifiable to you, make the assumption that each
of these observations is independent, given the state of the patient. That is, that the probability
of abnormal temperature given pneumonia is independent of the probability of abnormal blood
gas given pneumonia. If the observations are conditionally independent given the state, then
Pr(o1, o2, o3|s) = Pr(o1|s) Pr(o2|s) Pr(o3|s), where o1, o2, and o3 are the observations.

Exploration 3: Invent a state transition model (we know you probably don’t know anything
about medicine; just write down in English what your assumptions are, and then provide
numbers that are consistent with your explanation.)

Exploration 4: How many possible observations are there in this domain?

Exploration 5: Invent a sensor model. Both pneumonia and simply being on a ventilator
increase the likelihood of having abnormal blood gas readings. Pneumonia increases the
likelihood of abnormal temp. Having bacteria in the sputum is a very strong indication of
colonization (but there’s always a chance the test sample was contaminated, for example.)

Exploration 6: Use your state estimator from the previous part of the exploration to do esti-
mation in this model. Start with a belief state in which it’s certain that the patient is free
of bacteria. Try it with a sequence of observations that you think might be reflective of
an actual infection. Try it again with a sequence of observations that has some abnormal
readings, but which are probably not reflective of an actual infection. Show printouts of the
state updates at each step. Explain why they go the way they do.

Exploration 7: In fact, this model was constructed so that ICU personnel could decide whether
to administer antibiotic therapy and, if so, against which particular organisms (each of which
will have a different dynamics and observation model). Speculate a little bit on how having
a probabilistic model of the underlying state of a patient could help decide upon a therapy.


