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6.01: Introduction to EECS I

Lecture 11

Discrete Probability and State Estimation

April 29, 2008

Antonio Torralba

Uncertainty
We have used the idea of state space to plan trajectories 

from a starting state to a goal. 

We assumed:
• We knew the initial state
• Actions were executed without error

Unfortunately, things are not as ideal in real systems

Uncertainty

Initial state: unknown
Observations: low resolution and low rate video

What do we know? The floor plant, and we have learnt to recognize the rooms
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Uncertainty

Uncertainty

Uncertainty

In this video, the model of the world is driving your interpretations.
But, the your model of this world might be wrong.
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• Lecture
– Probabilistic model of the state space
– Probabilistic model of the observations

• Lab
– Modeling the effect of actions

Probability
Probability theory allow us to assign numerical 

assessments of uncertainty to possible events.

U = universe = set of all possible atomic events
Atomic event = an outcome

Axioms
• P(U) = 1
• P({}) = 0
• P(A U B) = P(A) + P(B) – P(A ∩ B)

Discrete Random Variables
A discrete random variable X takes a discrete set of values 

x1, x2, …, xn with probabilities p1, p2, …, pn

Examples
• Fair coin: X = {head : 0.5, tails : 0.5}
• Biased coin: X = {head : 0.6, tails : 0.4}

Question: what is an atomic event when we flip two coins?
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Pairs of random variables
We can consider two random variables together to 

understand how they interact.

C = cavity : {True, False} 
A = Toothache : {True, False} 

The event space is the cartesian product of the value 
spaces of the variables

C x A = {(T,T), (T,F), (F,T), (F,F)}

Joint Distribution
The joint distribution is a function from elements of the 

product space to probabilities

C x A = {(T,T), (T,F), (F,T), (F,F)}
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P(A=F, C =T) = 0.1

P(A=T, C =T) = 0.8

P(A=T, C =T) + P(A=F, C =T) + P(A=F, C =T) + P(A=F, C =F) = 1 

Joint Distribution
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C = cavity : {True, False} 
A = Toothache : {True, False}

P(A = T) = P(A=T, C=T) + P(A=T, C= F) = 0.05 + 0.05 = 0.1

P(A = T) = ?

P(A = T, C = T)  = P(A = T) . P(C = T)

0.05 0.015

Equality holds if the random variables A and C are independent

P(C = T) = P(A=T, C=T) + P(A=F, C= T) = 0.05 + 0.1 = 0.15

These are called marginal probabilities



5

Conditional Probability
What is the probability of having a cavity if the patient has 

toothache?

P(C = T | A = T) = ?

We are only uncertain about the value of C

0.05

0.1

0.05

0.8

C

A
T

F

T F

P(C = T | A = T) = 
P(C = T, A = T) 

P(A = T) 
=

0.05
0.1

= 0.5

Bayes’ Rule

Thomas Bayes (1702- 1761)

P(E2 | E1) . P(E1)P(E1 | E2) =
P(E2)

Verification:

P(E2 , E1)P(E1 | E2) =
P(E2)

P(E2 , E1)P(E2 | E1) =
P(E1)

P(E1 | E2) . P(E2) = P(E2 | E1) . P(E1) 

Sequences
We want to consider the case in which we have a 

sequence of states (random variables) 

The random variables could represent:

• Position of the robot at time t

• A word at position t within a sentence
Last week, we introduced the idea of a state space, and its use for 
planning trajectories from some starting state to a goal.
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A Model for the 6.01 course notes
Last week, we introduced the idea of a state space, and its use for planning 

trajectories from some starting state to a goal. Our assumptions in that work 
were that we knew the initial state, and that the actions could be executed 
without error. That is a useful idealization in many cases, but it is also very 
frequently false. Even navigation through a city can fail on both counts: 
sometimes we don't know where we are on a map, and sometimes, due to 
traffic or road work or bad driving, we fail to execute a turn we had intended 
to take. 

In such situations, we have some information about where we are: we can 
make observations of our local surroundings, which give us useful 
information; and we know what actions we have taken and the 
consequences those are likely to have on our location. So, the question is: 
how can we take information from a sequence of actions and local
observations and integrate it into some sort of estimate of where we are? 
What form should that estimate take?

We will consider this text as a sequence of random variables:  Wt

Each variable is one word Wt which can take any value within a Dictionary.

A Model for the 6.01 course notes

state stable programming python conditional

1) Faculty select words from the 6.01 dictionary

3) The memoryless model of a 6.01 faculty:

To build a sequence, each word is selected independently 
of the previous word.

2) Each word is selected randomly with some probability 
P (W = “Stable”) = 0.1 ?

P (W = “Stable”) + P (W = “programming”)  + P (W = “python”) + … = 1 

Estimation of P(W)
Last week, we introduced the idea of a state space, and its use for planning 

trajectories from some starting state to a goal. Our assumptions in that work 
were that we knew the initial state, and that the actions could be executed 
without error. That is a useful idealization in many cases, but it is also very 
frequently false. Even navigation through a city can fail on both counts: 
sometimes we don't know where we are on a map, and sometimes, due to 
traffic or road work or bad driving, we fail to execute a turn we had intended 
to take. 

In such situations, we have some information about where we are: we can 
make observations of our local surroundings, which give us useful 
information; and we know what actions we have taken and the 
consequences those are likely to have on our location. So, the question is: 
how can we take information from a sequence of actions and local
observations and integrate it into some sort of estimate of where we are? 
What form should that estimate take?

worka are beabout actions and both butare? without… …
1

we

13

Number of words = 179  
Number of distinct words = 112 

7
3

7

2
1 1 1 1

22
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Estimation of P(W)

worka are beabout actions and both butare? without… …
1

we

13

Number of words = 179  
Number of distinct words = 112 
7

3
7

2
1 1 1 1

22

P(W = “a”) ≈
Counts (“a”)

Number of words
= 7 / 179 = 0.039

P(W = “about”) ≈
Counts (“about”)

Number of words
= 1 / 179 = 0.0056

Σ P(W = wi)
wi in Dictionary

=1

This estimation guarantees that:

We aren’t done yet, we need to translate counts into probabilities

Generating Text

worka are beabout actions and both butare? without… …we

0.039
0.017

0.039

0.0056

Stick breaking0 1

a about work

To we the we city the useful

a actions actions question to those can

P(Wt = wt)

We assume that P(Wt=wt) is stationary. It does not change with time.

0.01

0.073

Generating Text
To we the we city the useful a actions actions

question to those can fail give a we and or we 
cases, take from planning In idea state to 
actions are In information is and a a without we 
What of some are the a planning navigation 
counts: state we of are: likely turn we Our 
sometimes, and can had work know taken and 
we know road sort a is driving, road of So, idea 
should have we for are a navigation some where 
know can where it surroundings, the planning 
our that have actions a local or taken false. 
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Properties of the memoryless model
• Words are drawn independently

P(“the system is instable”) = P(“is system the instable”) 

is
system

the

instable

Sentences are bags of words

P(W0=w0, W1=w1, …, WN=wN) = P(W0=w0) · P(W1=w1) · … · P(WN=wN) 

Independence assumption

•Under this model, the probability of a 
sentence does not depend on word order!

Sequences
Each paragraph is a sequence of words

How do we decide which word to add next?

w0, w1, w2, … wN

But, capturing all the dependencies is too complicated. 

We need a simple approximation that still captures 
properties of the text without requiring a full model of our 
brains.

P(WN+1=wN+1 | W0=w0, W1=w1, … WN=wN) = P(WN+1=wN+1)

The words are not independent

The bigram model of 6.01 course notes

Each word depends only on the previous word:

Initial state distribution
P(W0=w0) 

Faculty starts a paragraph by randomly selecting one 
word from the dictionary:

P(Wt+1=wt+1 | W0=w0, W1=w1, … Wt=wt) = P(Wt+1=wt+1 | Wt=wt) 
State transition model

Markov sequence
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The bigram model of 6.01 course notes

1) Initial state distribution

2) State transition model

P(W0 = w0)

P(Wt =wt | Wt-1=wt-1)

1

Nwords

Nwords

To build this model we need to estimate:

The number of parameters in the model is: Nwords + (Nwords)2

Bigram: Initial state distribution
Last week, we introduced the idea of a state space, and its use for planning 

trajectories from some starting state to a goal. Our assumptions in that work 
were that we knew the initial state, and that the actions could be executed 
without error. That is a useful idealization in many cases, but it is also very 
frequently false. Even navigation through a city can fail on both counts: 
sometimes we don't know where we are on a map, and sometimes, due to 
traffic or road work or bad driving, we fail to execute a turn we had intended 
to take. 

In such situations, we have some information about where we are: we can 
make observations of our local surroundings, which give us useful 
information; and we know what actions we have taken and the 
consequences those are likely to have on our location. So, the question is: 
how can we take information from a sequence of actions and local
observations and integrate it into some sort of estimate of where we are? 
What form should that estimate take?

worka are beabout actions and both butare? without… …
0.0056

we

0.073

0.039

0.03

0.06

0.018

P(W0 = w0)

Bigram: Transition Model 
Last week, we introduced the idea of a state space, and its use for planning 

trajectories from some starting state to a goal. Our assumptions in that work 
were that we knew the initial state, and that the actions could be executed 
without error. That is a useful idealization in many cases, but it is also very 
frequently false. Even navigation through a city can fail on both counts: 
sometimes we don't know where we are on a map, and sometimes, due to 
traffic or road work or bad driving, we fail to execute a turn we had intended 
to take. 

In such situations, we have some information about where we are: we can 
make observations of our local surroundings, which give us useful 
information; and we know what actions we have taken and the 
consequences those are likely to have on our location. So, the question is: 
how can we take information from a sequence of actions and local
observations and integrate it into some sort of estimate of where we are? 
What form should that estimate take?
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Bigram: Transition Model 
Last week, we introduced the idea of a state space, and its use for planning 

trajectories from some starting state to a goal. Our assumptions in that work 
were that we knew the initial state, and that the actions could be executed 
without error. That is a useful idealization in many cases, but it is also very 
frequently false. Even navigation through a city can fail on both counts: 
sometimes we don't know where we are on a map, and sometimes, due to 
traffic or road work or bad driving, we fail to execute a turn we had intended 
to take. 

In such situations, we have some information about where we are: we can 
make observations of our local surroundings, which give us useful 
information; and we know what actions we have taken and the 
consequences those are likely to have on our location. So, the question is: 
how can we take information from a sequence of actions and local
observations and integrate it into some sort of estimate of where we are? 
What form should that estimate take?

worka are beabout actions and both butare? without… …
0

we
00 0 0

2
1 0 0 0 00

Counts (“we”, word)

Estimation of state transition model
Number of words = 179  
Number of distinct words = 112 

P(Wt = “a” | Wt-1 = “we”) ≈
Counts (“we”, “a”)

Counts (“we”)
= 0 / 13 = 0

Σ P(Wt = w | Wt-1 = “we”)
w in Dictionary

=1

worka are beabout actions and both butare? without… …
0

we
00 0 0

2
1 0 0 0 00

P(Wt = “are” | Wt-1 = “we”) ≈
Counts (“we”, “are”)

= 2 / 13 = 0.15
Counts (“we”)

Counts (“we” word)

Generating Text

Stick breaking0 1

a about work

We

Initial state distribution

worka are beabout actions and both butare? without… …
0.0056

we

0.073

0.039

0.03

0.06

0.018

P(W0 = w0)
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Generating Text

Stick breaking0 1

are are? work

We

worka are beabout actions and both butare? without… …
0

we
00 0 0

0.15
0.07 0 0 0 00

P (wt | wt-1 = “we”)

don't

State transition model

Generating Text

We don't know what actions and the

P (W1 | W0 = “we”)

P (W2 | W1 = “don’t”)

P (W3 | W2 = “know”)

P (W4 | W3 = “what”)
P(W0)

Markov chain

P (W5 | W4 = “actions”)

P (W6 | W5 = “and”)

Generating text
We don't know what actions and the actions we 

had intended to execute a goal. Our 
assumptions in many cases, but it into some sort 
of our local observations and its use for planning 
trajectories from some information about where 
we are on our location. So, the initial state, and 
integrate it is also very frequently false. Even 
navigation through a goal. Our assumptions in 
many cases, but it into some sort of actions and 
sometimes, due to execute a turn we fail to 
execute a state to have some sort of our 
location. So, the question is: how can …
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Comparison of the two models

is
system

the
instable

P(W0, …, WN) = P(W0) · P(W1) · … · P(WN) 

Bag of words model

Independence assumption

Bigram model
P(W0, …, WN) = P(W0) · P(W1|W0) ·…· P(WN|WN-1) 

Markov assumption

Why is it useful to build models? 

When is a model good enough / useful?

Sentence = {W0, W1, W2, …, WN} 

Noisy Observations

The + system + has + negative + (8 letters word)

Observation Model
The sentence is a sequence of words, but now the words 

are hidden. We only observe something that depends on 
the hidden words.

ot = length word wt

If observations are the number of letters on a word:

P(Ot = 1 | Wt = “the”) = 0 

P(Ot = 2 | Wt = “the”) = 0 

P(Ot = 3 | Wt = “the”) = 1 
…

P(Ot = ot | Wt = wt) 

Observation Model:
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Estimation of the Hidden State
Let’s start with the memoryless faculty model: words are 

independent of each other.

Can we predict the hidden word?

P(W5 = w5 | O5 = 8)  = ? 

Intuition: 
1. Select all words of 8 letters in the dictionary.
2. Then, take their frequencies and normalize them so 

that they sum to 1. 
3. Select the word with the highest probability.

Estimation of the Hidden State
Intuition: 
1. Select all words of 8 letters in the dictionary.
2. Then, take their frequencies and normalize them so 

that they sum to 1. 
3. Select the word with the highest probability.

P(Ot = 8 | Wt = wt) P(Wt=wt) 
P(Wt = wt | Ot = 8)  =

P(Ot = 8) 

With math:

P(Ot = 8) = ? 

P(Ot = 8) = Σ P(Ot = 8 | Wt = w) P(Wt=w) 
w
Sum of probabilities of all words of length 8

Estimation of the Hidden State
We need a good model of 6.01, so I will use all the course notes: 

53181 words, and 7463 distinct words

function

P(Wt = wt | Ot = 8)

function equation sequence behavior possible computer actually

0.04

0

0.02
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Hidden Markov Model
• Initial State Distribution

• State Transition Model (Bigram model)

• Observation Model

P(W0 = w0)

P(Wt =wt | Wt-1=wt-1)

P(Ot = ot | Wt = wt) 

Estimation of the Hidden State

Can we predict the hidden word?

P(W5 = w5 | O5 = 8, W4 = “negative”)  = ? 

P(W5 = w5 | O5 = 8, W4 = “negative”)  = 

Bayes’ rule

P(O5 = 8 | W5 = w5, W4 = “negative”). P(W5 = w5| W4 = “negative”)

P(O5 = 8 | W4 = “negative”)
=

P(O5 = 8 | W5 = w5). P(W5 = w5| W4 = “negative”)

P(O5 = 8 | W4 = “negative”)
=

Estimation of the Hidden State
P(W5 = w5 | O5 = 8, W4 = “negative”)  = 

P(O5 = 8 | W5 = w5). P(W5 = w5| W4 = “negative”)

P(O5 = 8 | W4 = “negative”)
=

P(O5 = 8 | W4 = “negative”) = ?

As before, we can calculate this with values we already know

P(O5 = 8 | W4 = “negative”) = Σ P(O5 = 8 | W5 = w). P(W5 = w| W4 = “negative”) 
w
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Estimation of the Hidden State

P(Wt=wt | Wt-1=wt-1)
Using all the course notes: 7463 distinct words

feedback

Is a matrix with more than 50 million entries! 

P(W5 = w5 | O5 = 8, W4 = “negative”)

feedback

1

0

0.5

Estimation of the Hidden States

o1 = 3, o2 = 6, o3 = 3, o4 = 7, o5 = 8  

Applications
• Noisy image of an object
• Speech recognition
• Robot localization
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Localization

Observations = images
States = location (offices, corridor, conference room)
Transition model = encode topology of the space


