6.01, Spring Semester, 2008—Course notes for Week 1 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.01—Introduction to EECS 1
Spring Semester, 2008

Course notes for Week 1

There will be three handouts issued in 6.01 each week:

1. Weekly assignment: This includes work to do in the software lab and the design lab, as well as
a two-part homework—one part due before the design lab, one part due before the following

week’s lecture.

2. Weekly course notes: (This handout is the course notes for week 1.) There is no course
textbook. Instead, we’ll distribute notes that cover the course material as we progress though
it week by week. This week there are two distinct sets of note (all in this document: a high-
level overview of the goals, approach, and material of the course, and detailed technical notes

on Python).
3. Weekly lecture handout: This is to help you follow along in lecture and to review afterwards.
All three handouts will be distributed in lecture and also available online from the 6.01 web site

mit.edu/6.01, linked from the course calendar. You should bring all three handouts with you to
the software and design labs.

6.01, Spring Semester, 2008—Course notes for Week 1 2

Course Overview

1 Goals for 6.01

We have a number of goals for this course. Our primary goal is to enhance your ability to solve
complex problems by strengthening your skill in the most pervasive strategy for dealing with com-
plexity: using abstraction and modularity. We will examine the use of abstraction and modularity
in a number of contexts associated with problems in electrical engineering (EE) and computer sci-
ence (CS), as we hope to help you develop a more fundamental understanding of abstraction and
modularity. We also hope that you will see more than just the similarities in broad perspective,
but will also develop skills in using several specific abstraction strategies that have persisted in im-
portance. To accomplish our primary goal, we will study how to analyze and design systems that
interact with, and attempt to control, an external environment. Such systems include everything
from low-level controllers like heat regulators or cardiac pacemakers, to medium-level systems like
automated navigation or virtual surgery, to high-level systems that provide more natural human-
computer interfaces.

Our second goal is for you to learn that making mathematical models of real systems can help in
the design and analysis of those systems; and to give you practice with building those models. In
particular, we hope you will develop insight in to the difficult step of deciding which aspects of the
real world are important to the problem being solved, and then how to model in ways that give
insight into the problem.

We also hope to engage you more actively in the educational process. Most of the work of this
course will not be like typical problems from the end of a chapter. You will work individually and
in pairs to solve problems that are deeper and more open-ended. There will not be a unique right
answer. Argument, explanation, and justification of approach will be more important than the
answer. We hope to expose you to the ubiquity of trade-offs in engineering design. It is rare that
a single approach will be best in every dimension; some will excel in one way, others in a different
way. Deciding how to make such trade-offs is a crucial part of engineering.

Another way in which we hope to engage you in the material is by having many of you return to the
course as a lab assistant. Having a large number of lab assistants in the class means that you can
be given more interesting open-ended design problems, because there will be staff readily available
to make sure you do not get stuck. Even more important, the lab assistants will question you as
you go; to challenge your understanding and help you see and evaluate a variety of approaches.
This Socratic method has proven to be of great intellectual value to both classroom students and
lab assistants.

Finally, of course, we have the more typical goals of teaching exciting and important basic material
from electrical engineering and computer science, including modern software engineering, linear
systems analysis, electronic circuits, and estimation and decision-making. This material all has an
internal elegance and beauty, as well as crucial role in building modern EE and CS systems.

2 Modularity, abstraction, and modeling

Whether proving a theorem by building up from lemmas to basic theorems to more specialized
results, or designing a circuit by building up from components to modules to complex processors,

6.01, Spring Semester, 2008—Course notes for Week 1 3

or designing a software system by building up from generic procedures to classes to class libraries,
humans deal with complexity by exploiting the power of abstraction and modularity. And this is
because there is only so much complexity a single person can hold in their head at a time.

Modularity is the idea of building components that can be re-used; and abstraction is the idea that
after constructing a module (be it software or circuits or gears), most of the details of the module
construction can be ignored and a simpler description used for module interaction (the module
computes the square root, or doubles the voltage, or changes the direction of motion).

One can move up a level of abstraction and construct a new module by putting together several
previously-built modules, thinking only of their abstract descriptions, and not their implementa-
tions. This process gives one the ability to construct systems with complexity far beyond what
would be possible if it were necessary to understand each component in detail.

Any module can be described in a large number of ways. We might describe the circuitry in a
digital watch in terms of how it behaves as a clock and a stopwatch, or in terms of voltages and
currents within the circuit, or in terms of the heat produced at different parts of the circuitry. Each
of these is a different model of the watch. Different models will be appropriate for different tasks:
there is no single correct model.

The primary theme of this course will be to learn about different methods for building modules
out of primitives, and of building different abstract models of them, so that we can analyze or
predict their behavior, and so we can recombine them into even more complex systems. The same
fundamental principles will apply to software, to control systems, and to circuits.

2.1 Example problem

Imagine that you needed to make a robot that would roll up close to a light bulb and stop a
fixed distance from it. The first question is, how can we get electrical signals to relate to the
physical phenomena of light readings and robot wheel rotations? There is a whole part of electrical
engineering related to the design of physical devices that connect to the physical world in such
a way that some electrical property of the device relates to a physical process in the world. For
example, a light-sensitive resistor (photo-resistor) is a sensor whose resistance changes depending
on light intensity; a motor is an effector whose rotor speed is related to the voltage across its two
terminals. In this course, we will not examine the detailed physics of sensors and effectors, but will
concentrate on ways of designing systems that use sensors and effectors to perform both simple
and more complicated tasks. To get a robot to stop in front of a light bulb, the problem will be
to find a way to connect the photo-resistor resistor to the motor, so that the robot will stop at an
appropriate distance from the bulb.

2.2 An abstraction hierarchy of mechanisms

Given the light-sensitive resistor and the motor, we could find all sorts of ways of connecting them,
using bits of metal and ceramic of different kinds, or making some kind of magnetic or mechanical
linkages. The space of possible designs of machines is enormous.

One of the most important things that engineers do, when faced with a set of design problems, is to
standardize on a basis set of components to use to build their systems. There are many reasons for
standardizing on a basis set of components, mostly having to do with efficiency of understanding
and of manufacturing. It’s important, as a designer, to develop a repertoire of standard bits and

6.01, Spring Semester, 2008—Course notes for Week 1 4

electronic computers witl
Python programs that

select outputs by

planning

&fgctronic computers

‘electronic computers

digital electronic circuits

traditional analog circuits

electrical systems

Figure 1: Increasingly constrained systems.

pieces of designs that you understand well and can put together in various ways to make more
complex systems. If you use the same basis set of components as other designers, you can learn
the techniques from them, rather than having to re-invent them yourself. And other people will be
able to readily understand and modify your designs.

We can often make a design job easier by limiting the space of possible designs, and by standardizing
on:

e a basis set of primitive components;
e ways of combining the primitive components to make more complex systems; and

e ways of “packaging” or abstracting pieces of a design so they can be reused.

Very complicated design problems can become tractable using such a primitive-combination-abstraction
(PCA) approach. In this class, we will examine and learn to use a variety of of PCA strategies
common in EE and CS, and will even design some of our own, for special purposes. In the rest of
this section, we will hint at some of the PCA systems we’ll be developing in much greater depth
throughout the class. Figure 1 shows one view of this development, as a successive set of restrictions

of the design space of mechanisms.

One very important thing about abstract models is that once we have fixed the abstraction, it
will usually be possible for it to be implemented using a variety of different underlying substrates.
So, as shown in figure 2, we can construct general-purpose computers out of a variety of different
systems, including digital circuits and Turing machines (a “thought-experiment” construction of a
machine that can follow instructions and read and write symbols on an infinite tape). And systems
satisfying the digital circuit abstraction can be constructed from analog circuits, but also from
gears or water or light.

Another demonstration of the value of abstracted models is that we can use them, by analogy, to
describe quite different systems. So, for example, the constraint models of circuits can be applied
to describing transmission of neural signals down the spinal cord, or of heat through a network of
connected bodies.

6.01, Spring Semester, 2008—Course notes for Week 1 5

General-purpose computer

Cellular
automata

Digital circuits

Analog
electronics

Figure 2: A single abstraction may have a variety of different underlying implementations.

Circuits Typical circuits are built out of a basis set of primative components such as voltage
sources, resistors, capacitors, inductors and transistors. This set of component types was chosen
to be closely related to primitive concepts in our physical understanding of electronic systems in
terms of voltage, current, resistance, and the rate of change of those quantities over time. So, when
we buy a physical resistor, we tend to think only of its resistance; and when we buy a capacitor, we
think of its ability to store energy. But, of course, that physical resistor has some capacitance, and
the capacitor, some resistance. Still, it helps us in our designs to have devices that are as close to
the ideal models as possible; and it helps that people have been designing with these components
for years, so that we can adopt the strategies the generations of clever people have developed.

The method of combining elements is to connect their terminals together, usually with wire. And
our method of abstraction is to describe the constraints that a circuit element exerts on the currents
and voltages of terminals to which the element is connected.

So, armed with the standard basis set of analog circuit components, we can try to build a circuit
to control our robot. We have a resistance that varies with the light level, but we need a voltage
that does so, as well. We can achieve this by using a wvoltage divider, which is shown in figure 3(a).
Using an abstract, constraint-based model of the behavior of circuit components that we’ll study
in detail later in the course, we can determine the following relationship between Vyu and Viy:

Rp

Vout = =————Vin .
out RA+RB in

So, for example, if Ra = Rp, then Vot = Vin/2. Or, in our case, if Ra actually varies with the
amount of light shining on it, then V¢ will also vary with the light.

That’s great. So, now, we might imagine that we could use this voltage difference that we’ve created
to drive the motor at different speeds, depending on the light hitting the resistor, using a circuit
something like the one shown in figure 3(b). But, sadly, that won’t work. It turns out that once
we connect the motor to the circuit, it actually changes the voltages.

So, although we have developed an abstract model of the behavior of circuit components, which
lets us analyze the behavior of a particular complete circuit design, it doesn’t give us modularity.

6.01, Spring Semester, 2008—Course notes for Week 1 6

Vin +15V
O O

AE

Ra

Vout
¢

E

_(é)_no

(a) Resistor divider. (b) Connected to a motor.

Rmotor

)

(c) Connected to a motor with a buffer.

|||—(‘

Figure 3: Voltage dividers.

6.01, Spring Semester, 2008—Course notes for Week 1 7

That is, we can’t design two parts of a circuit, understand their behavior, and then predict the
behavior of the composite system based on the behavior of the separate components. Instead, we’d
have to re-analyze the joint behavior of the whole composite system. Lack of modularity makes
it very difficult to design large systems, because two different people, or the same person at two
different times, cannot design pieces and put them together without understanding the whole.

To solve this problem, we can augment our analog-circuit toolbox with some additional components
that allow us to design components with modular behavior; they “buffer” or “isolate” one part of
the circuit from another in ways that allow us to combine the parts more easily. In this class,
we’ll use op-amps to build buffers, which will let us solve our sample problem using a slightly more
complex circuit, as shown in figure 3(c).

Digital circuits In analog circuits, we think about voltages on terminals ranging over real values.
This gives us the freedom to create an enormous variety of circuits, but sometimes that freedom
actually makes the design process more difficult. To design ever more complex circuits, we can
move to a much stronger, digital abstraction, in which the voltages on the terminals are thought of
as only taking on values that are either “low” or “high” (often called 0 and 1). This PCA system
is made up of a basis set of elements, called gates, that are built out of simpler analog circuit
components, such as transistors and resistors. Adopting the digital abstraction is a huge limitation
on the kinds of circuits that can be built, but because it actually simplifies the basic components
and increases modularity, it affords designers the cognitive simplicity they need to build incredibly
complex machines by designing small parts and putting them together into increasingly larger
pieces. Digital watches, calculators, and computers are all built this way.

Elements are combined by wiring, as they were in analog circuits. But in this model, their effects
on one another can be isolated to simple input/output relationships at the connections. So now
the modularity is very powerful, and each circuit can be described with a Boolean-logic description
of how its output values depend on the history of values of its inputs.

Digital design is a very important part of EECS, and it is treated in a number of our courses at
basic and advanced levels, but is not one of the topics we’ll go into in detail in 6.01.

Computers One of the most important developments in the design of digital circuits is that of
the general-purpose “stored program” computer. Computers are a particular class of digital circuits
that are general purpose: the same actual circuit can perform (almost) any transformation between
its inputs and its outputs. Which particular transformation it performs is governed by a program,
which is some settings of physical switches, or information written on an external physical memory,
such as cards or a tape, or information stored in some sort of internal memory.

The “almost” in the previous section refers to the actual memory capacity of the computer. Exactly
what computations a computer can perform depends on the amount of memory it has; and also
on the time you're willing to wait. So, although a general-purpose computer can do anything a
special-purpose digital circuit can do, in the information-processing sense, the computer might be
slower or use more power. However, using general-purpose computers can save an enormous amount
of engineering time and effort. It is much cheaper and easier to debug and modify and manufacture
software than hardware. The modularities and abstractions that software PCA systems give us are
even more powerful than those derived from the digital circuit abstraction.

6.01, Spring Semester, 2008—Course notes for Week 1 8

Python programs Every general-purpose computer has a different detailed design, which means
that the way its program needs to be specified is different. Furthermore, the “machine languages”
for describing computer programs, at the most primitive level, are awkward for human program-
mers. So, we have developed a number of computer programming languages for specifying a desired
computation. These languages are converted into instructions in the computer’s native machine
language by other computer programs, called compilers or interpreters. One of the coolest and
most powerful things about general-purpose computers is this ability to write computer programs
that process or create or modify other computer programs.

Computer programming languages are PCA systems. They provide primitive operations, ways of
combining them, and ways of abstracting over them. We will spend a considerable amount of time
in this course studying the particular primitives, combination mechanisms, and abstraction mecha-
nisms made available in Python. But the choice of Python is relatively unimportant. Virtually all
modern programming languages supply a similar set of mechanisms, and the choice of programming
language is primarily a matter of taste and convenience.

In a computer program we have both data primitives and computation primitives. At the most
basic level, computers generally store binary digits (bits) in groups of 32 or 64, called words. These
words of data are the primitives, and they can be interpreted by our programs as representing
integers, floating-point numbers, strings, or addresses of other data in the computer’s memory.
The computational primitives supported by most computers include numerical operations such as
addition and multiplication, and going and finding the contents of a memory at a given address.
In Python, we will work at a level of abstraction that doesn’t require us to think very much about
addresses of data, but it is useful to understand that level of description, as well.

Primitive data and computation elements can be combined and abstracted in a variety of different
ways, depending on choices of programming style. We’ll explore these in more detail in section 3.2.

2.3 Models

So far, we have discussed a number of ways of framing the problem of designing and constructing
mechanisms. Each PCA system is accompanied by a modeling system, that lets us make mathe-
matical models of the systems we construct.

What is a model? It is a new system that is considerably simpler than the system being modeled,
but which captures the important aspects of the original system. We might make a physical model
of an airplane to test in a wind tunnel. It doesn’t have to have passenger seats or landing lights;
but it has to have surfaces of the correct shape, in order to capture the important properties for
this purpose. Mathematical models can capture properties of systems that are important to us,
and allow us to discover things about the system much more conveniently than by manipulating
the original system itself.

One of the hardest things about building models is deciding what aspects of the original system
to model and which ones to ignore. Many classic, dramatic engineering failures can be ascribed to
failing to model important aspects of the system.

Another important dimension in modeling is whether the model is deterministic or not. We might,
for example, model the effect of the robot executing a command to set its velocity as making an
instantaneous change to the commanded velocity. But, of course, there is likely to be some delay
and some error. We have to decide whether to ignore that delay and error in our model and treat
it as if it were ideal; or, for example, to make a probabilistic model of the possible results of that

6.01, Spring Semester, 2008—Course notes for Week 1 9

command. Generally speaking, the more different the possible outcomes of a particular action or
command, and the more spread out the probability distribution over those outcomes, the more
important it is to explicitly include uncertainty in the model.

Once we have a model, it can be used in a variety of different ways, which we explore below.

Analytical models By far the most prevalent use of models is in analysis: Given a circuit design,
what will the voltage on this terminal be? Given a computer program, will it compute the desired
answer? How long will it take? Given a control system, implemented as a circuit or as a program,
will the system stop at the right distance from the light bulb?

Analytical tools are important. It can be hard to verify the correctness of a system by trying it in all
possible initial conditions with all possible inputs; sometimes it’s easier to develop a mathematical
model and then prove a theorem about the model.

For some systems, such as pure software computations, or the addition circuitry in a calculator, it
is possible to analyze their correctness or speed with just a model of the system in question. For
other systems, such as fuel injectors, it is impossible to analyze the correctness of the controller
without also modeling the environment (or “plant”) to which it is connected and analyzing the
behavior of the coupled system of the controller and environment.

We can do a very simple analysis of a robot moving toward a lamp. Imagine that we arrange it so
that the robot’s velocity at time t, V[t], is proportional to the difference between the actual light
level, X[t] and a desired light level (that is, the light level we expect to encounter when the robot
is the desired distance from the lamp), Xgesired; that is, we can model our control system with the
difference equation

V[t] = k(X[t] - Xdesired) .

Now, we need to model the world. For simplicity, imagine that the light level is equal (after a units
conversion) to the robot’s position, and that the robot’s position at time t is its position at time
t — 1 plus its velocity at time t —1. When we couple these models, we get the difference equation

X[t] = X[t - ” + k(X[t -]] - Xdesired))

where k is the constant of proportionality of the controller. Now, for a given value of k, we can
determine how the system will behave over time, by solving the difference equation in X.

Later in the course, we will see how easily determined mathematical properties of a difference
equation model can tell us whether a control system will have the desired behavior and whether or
not the controller will cause the system to oscillate. These same kinds of analyses can be applied
to robot control systems as well as to the temporal properties of voltages in a circuit, and even to
problems as unrelated as the consequences of a monetary policy decision in economics.

Synthetic models One goal of many people in a variety of sub-disciplines of computer science
and electrical engineering is automatic synthesis of systems from formal descriptions of their desired
behavior. For example, you might describe some properties you would want the input/output
behavior of a circuit or computer program to have, and then have a computer system discover a
circuit or program with the desired property.

This is a well-specified problem, but generally the search space of possible circuits or programs is
much too large for an automated process; the intuition and previous experience of an expert human
designed cannot yet be matched by computational search methods.

6.01, Spring Semester, 2008—Course notes for Week 1 10

Internal models As we wish to build more and more complex systems with software programs
as controllers, we find that it is often useful to build additional layers of abstraction on top of the
one provided by a generic programming language. This is particularly true as the nature of the
exact computation required depends considerably on information that is only received during the
execution of the system.

Consider, for example, an automated taxi robot (or, more prosaically, the navigation system in
your new car). It takes, as input, a current location in the city and a goal location, and gives, as
output, a path from the current location to the goal. It has a map built into it.

It is theoretically possible to build an enormous digital circuit or computer program that contains
a look-up table, so that whenever you get a pair of locations, you can look it up and read out the
path. But the size of that table is too huge to contemplate. Instead, what we do is construct an
abstraction of the problem as one of finding a path from any start state to any goal state, through
a graph (an abstract mathematical construct of “nodes” with “arcs” connecting them). We can
develop and implement a general-purpose algorithm that will solve any shortest-path problem in a
graph. That algorithm and implementation will be useful for a wide variety of possible problems.
And for the navigation system, all we have to do is represent the map as a graph, specify the start
and goal states, and call the general graph-search algorithm.

We can think of this process as actually putting a model of the system’s interactions with the world
inside the controller; it can consider different courses of action in the world and pick the one that
is the best according to some criterion.

Another example of using internal models is when the system has some significant lack of infor-
mation about the state of the environment. In such situations, it may be appropriate to explicitly
model the set of possible states of the external world and their associated probabilities, and to up-
date this model over time as new evidence is gathered. We will pursue an example of this approach
near the end of the course.

3 Programming embedded systems

There are lots of different ways of thinking about modularity and abstraction for software. Different
models will make some things easier to say and do and others more difficult, making different
models appropriate for different tasks. In the following sections, we explore different strategies for
building software systems that interact with an external environment, and then different strategies
for specifying the purely computational part of a system.

3.1 Interacting with the environment

Increasingly, computer systems need to interact with the world around them, receiving information
about the external world, and taking actions to affect the world. Furthermore, the world is dynamic.
As the system is computing, the world is changing.

There are a variety of different ways for organizing computations that interact with an external
world. Generally speaking, such a computation needs to:

e get information from sensors (light sensors, sonars, mouse, keyboard, etc.)
e perform computation, remembering some of the results
e take actions to change the outside world (move the robot, print, draw, etc.)

6.01, Spring Semester, 2008—Course notes for Week 1 11

But these operations can be put together in different styles.

Sequential The most immediately straightforward style for constructing a program that interacts
with the world is the basic imperative style. A library of special procedures is defined, some of which
read information from the sensors and others of which cause actions to be performed. Example
procedures might move a robot forward a fixed distance, or send a file out over the network, or
move video-game characters on the screen.

In this model, we could naturally write a program that moves an idealized robot in a square, if
there is space in front of it.

if sonarDistances () [3] > 1:
move (1)
turn (90)
move (1)
turn (90)
move (1)
turn (90)
move (1)
turn (90)

The major problem with this style of programming is that the programmer has to remember to
check the sensors sufficiently frequently. For instance, if the robot checks for free space in front,
and then starts moving, it might turn out that a subsequent sensor reading will show that there
is something in front of it, either because someone walked in front of the robot or because the
previous reading was erroneous. It is hard to have the discipline, as a programmer, to remember
to keep checking the sensor conditions frequently enough, and the resulting programs can be quite
difficult to read and understand.

For the robot moving toward the light, we might write a program like this:

while lightValue < desiredValue:
move (0.1)

This would have the root creep up step by step toward the light. We might want to modify it so
that the robot moved a distance that was related to the difference between the current and desired
light values. However, if it takes larger steps, then during the time that it’s moving it won’t be
sensitive to possible changes in the light value and cannot react immediately to them.

Event-Driven User-interface programs are often best organized differently, as event-driven (also,
interrupt driven) programs. In this case, the program is specified as a collection of functions
(possibly with side effects that change some global state) that are attached to particular events
that can take place. So, for example, there might be functions that are called when the mouse
is clicked on each button in the interface, when the user types into a text field, or when the
temperature of a reactor gets too high. An “event loop” runs continuously, checking to see if any
of triggering events happens, and, if it does, calls the associated function.

In our simple example, though, we might imagine writing a program that told the robot to drive
forward by default; and then install an event handler that says that if the light level reaches the
desired value, it should stop. This program would be reactive to sudden changes in the environment.

As the number and frequency of the conditions that need responses increases, it can be difficult to
keep a program like this running well, and to guarantee a minimum response time to any event.

6.01, Spring Semester, 2008—Course notes for Week 1 12

Transducer An alternative view is that programming a system that interacts with an external
world is like building a transducer with internal state. Think of a transducer as a processing box
that runs continuously. At regular intervals (think of this as happening many times per second),
the transducer reads all of the sensors, does a small amount of computation, stores some values it
will need for the next computation, and then generates output values for the actions.

This computation happens over and over and over again. Complex behavior can arise out of the
temporal pattern of inputs and outputs. So, for example, a robot might try to move forward
without hitting something by doing:

def step():

distToFront = min(sonarDistances () [3], sonarDistances () [4])
motorOutput (0.7 * (distToFront - 0.1), 0.0)

Executed repeatedly, this program will automatically modulate the robot’s speed to be proportional
to the free space in front of it.! We could make it average over recent sensor values, to smooth out
sensor noise, by doing something like:
def step():

distToFront = min(sonarDistances () [3],sonarDistances () [4])

robot.avgDistToFront = 0.5 * robot.avgDistToFront + 0.5 * distToFront
motorOutput (0.7 * (avgDistToFront - 0.1), 0.0)

We’d have to initialize robot.avgDistToFront to some value (maybe 0) before this whole process
started.?

The main problem with the transducer approach is that it can be difficult to do tasks that are
fundamentally sequential (like the example of driving in a square, shown above). We will start
with the transducer model, and then later in the course, we will build a new abstraction layer on
top of it that will make it easy to do sequential commands, as well.

3.2 Programming models

There are lots of different ways of thinking about modularity and abstraction for software. Different
models will make some things easier to say and do and others more difficult, making different models
appropriate for different tasks.

Imperative computation Most of you have probably been exposed to an imperative model of
computer programming, in which we think of programs as giving a sequential set of instructions to
the computer to do something. And, in fact, that is how the internals of the processors of computers
are typically structured. So, in Java or C or C++4, you write typically procedures that consist of
lists of instructions to the computer:

e Put this value in this variable
e Square the variable

'Here, we are using the commands that our SoaR robot control system uses. The procedure sonarDistances ()
returns a list of distance readings from the sonar sensors; numbers 3 and 4 are looking out the front of the robot.
The procedure motorOutput (fvel, rvel) tries to set the robot’s forward velocity to fvel and rotational velocity to
rvel.

2When we want a variable to maintain its value across successive calls to the transducer’s step function, we need
to prefix it with robot. . The reasons for this will become clearer in the next few chapters.

6.01, Spring Semester, 2008—Course notes for Week 1 13

e Divide it by pi
e If the result is greater than 1, return the result

In this model of computation, the primitive computational elements are basic arithmetic operations
and assignment statements. We can combine the elements using: sequences of statements, and con-
trol structures such as if, for, and while. We can abstract away from the details of a computation
by defining a procedure that does it. Now, the engineer only needs to know the specifications of
the procedure, but not the implementation details, in order to use it.

Functional computation Another style of programming is the functional style. In this model,
we gain power through function calls. Rather than telling the computer to do things, we ask it
questions: What is 4 + 57 What is the square root of 67 What is the largest element of the list?

These questions can all be expressed as asking for the value of a function applied to some arguments.
But where do the functions come from? The answer is, from other functions. We start with some
set of basic functions (like “plus”), and use them to construct more complex functions.

This method wouldn’t be powerful without the mechanisms of conditional evaluation and recursion.
Conditional functions ask one question under some conditions and another question under other
conditions. Recursion is a mechanism that lets the definition of a function refer to the function
being defined. Recursion is as powerful as iteration.

In this model of computation, the primitive computational elements are typically basic arithmetic
and list operations. We combine elements using function composition (using the output of one
function as the input to another), if, and recursion. We use function definition as a method
of abstraction, and the idea of higher-order functions (passing functions as arguments to other
functions) as a way of capturing common high-level patterns.

Data structures In either style of asking the computer to do work for us, we have another kind
of modularity and abstraction, which is centered around the organization of data.

At the most primitive level, computers operate on collections of (usually 32 or 64) bits. We can
interpret such a collection of bits as representing different things: a positive integer, a signed integer,
a floating-point number, a boolean value (true or false), one or more characters, or an address of
some other data in the memory of the computer. Python gives us the ability to use all of these
primitives, except for addresses directly.

There is only so much you can do with a single number, though. We’d like to build computer
programs that operate on representations of documents or maps or circuits or social networks. To
do so, we need to aggregate primitive data elements into more complex data structures. These can
include lists, arrays, dictionaries, and other structures of our own devising.

Here, again, we gain the power of abstraction. We can write programs that do operations on a data
structure representing a social network, for example, without having to worry about the details of
how the social network is represented in terms of bits in the machine.

Object-oriented programming: computation + data structures Object-oriented pro-
gramming is a style that applies the ideas of modularity and abstraction to execution and data at
the same time.

6.01, Spring Semester, 2008—Course notes for Week 1 14

An object is a data structure, together with a set of procedures that operate on the data. Basic
procedures can be written in an imperative or a functional style, but ultimately there is imperative
assignment to state variables in the object.

One major new type of abstraction in OO programming is “generic” programming. It might be
that all objects have a procedure called print associated with them. So, we can ask any object
to print itself, without having to know how it is implemented. Or, in a graphics system, we might
have a variety of different objects that know their x,y positions on the screen. So each of them can
be asked, in the same way, to say what their position is, even though they might be represented
very differently inside the objects.

In addition, most object-oriented system support inheritance, which is a way to make new kinds of
objects by saying that they are mostly like another kind of object, but with some exceptions. This
is another way to take advantage of abstraction.

Conclusion Python as well as other modern programming languages, such as Java, Ruby and
C++, support all of these programming models. The programmer needs to choose which program-
ming model best suits the task. This is an issue that we will return to throughout the course.

6.01, Spring Semester, 2008—Course notes for Week 1 15

Week 1: Python, Functional
Programming, Recursion

1 Getting used to Python

We assume you know how to program in some language, but are new to Python. We’ll use Java as
an informal running comparative example.

Here are what we think are the most important differences between Python and what you already
know about programming.

1.1 Shell

Python is designed to be easy for a user to interact with. It comes with an interactive mode called
a listener or shell. The shell gives a prompt (usually something like >>>) and waits for you to type
in a Python expression or program. Then it will evaluate the expression you typed in and print out
the value of the result. So, for example, an interaction with the Python shell might look like this:

>> 5 + 5
10

>>> x =6
>>> X

6

>>> x + X
12

>>> y = ’hi’
>>>y +y
’hihi’
>>>

So, you can use Python as a fancy calculator. And as you define your own procedures in Python,
you can use the shell to test them or use them to compute useful results.

1.2 Indentation and line breaks

Every programming language has to have some method for indicating grouping. Here’s how you
write an if-then-else structure in Java:

if (s == 1){
s =8+ 1;
a=a - 10;
} else {

s =s + 10;
a=a + 10;

6.01, Spring Semester, 2008—Course notes for Week 1 16

The braces specify what statements are executed in the if case. It is considered good style to indent
your code to agree with the brace structure, but it isn’t required. In addition, the semi-colons are
used to indicate the end of a statement, independent of where the line breaks in the file are. So,
the following code fragment has the same meaning as the previous one.

if (s == 1){

s =8

+ 1; a=a - 10;
} else {

s = s + 10;
a=a+ 10;
}
In Python, on the other hand, there are no braces for grouping or semicolons for termination.

Indentation indicates grouping and line breaks indicate statement termination. So, in Python,
we’d write the previous example as

if s == 1
s =s+1
a=a-10
else:

s =s + 10
a=a+ 10

There is no way to put more than one statement on a single line.? If you have a statement that’s
too long for a line, you can signal it with a backslash:

aReallyLongVariableNameThatMakesMyLinesLong = \
aReallyLongVariableNameThatMakesMyLinesLong + 1

It’s easy for Java programmers to get confused about colons and semi-colons in Python. Here’s the
deal: (1) Python doesn’t use semi-colons; (2) Colons are used to start an indented block, so they
appear on the first line of a procedure definition, when starting a while or for loop, and after the
condition in an if, elif, or else.

Is one method better than the other? No. It’s entirely a matter of taste. The Python method is
pretty unusual. But if you’re going to use Python, you need to remember about indentation and
line breaks being significant.

1.3 Types and declarations

Java programs are what is known as statically and strongly typed. That means that the types of all
the variables must be known at the time that the program is written. This means that variables
have to be declared to have a particular type before they’re used. It also means that the variables
can’t be used in a way that is inconsistent with their type. So, for instance, you’d declare x to be
an integer by saying

3 Actually, you can write something like if a > b: a = a + 1 all on one line, if the work you need to do inside
an if or a for is only one line long.

6.01, Spring Semester, 2008—Course notes for Week 1 17

int x;
X =6 % 7;

But you'd get into trouble if you left out the declaration, or did

int x;
x = "thing";

because a type checker is run on your program to make sure that you don’t try to use a variable in
a way that is inconsistent with its declaration.

In Python, however, things are a lot more flexible. There are no variable declarations, and the same
variable can be used at different points in your program to hold data objects of different types. So,
this is fine, in Python:

if x == 1:
x = 89.3

sl
|

= "thing"

The advantage of having type declarations and compile-time type checking, as in Java, is that a
compiler can generate an executable version of your program that runs very quickly, because it can
be sure what kind of data is stored in each variable, and doesn’t have to check it at runtime. An
additional advantage is that many programming mistakes can be caught at compile time, rather
than waiting until the program is being run. Java would complain even before your program started
to run that it couldn’t evaluate

3 + llhill

Python wouldn’t complain until it was running the program and got to that point.

The advantage of the Python approach is that programs are shorter and cleaner looking, and
possibly easier to write. The flexibility is often useful: In Python, it’s easy to make a list or array
with objects of different types stored in it. In Java, it can be done, but it’s trickier. The disadvantage
of the Python approach is that programs tend to be slower. Also, the rigor of compile-time type
checking may reduce bugs, especially in large programs.

1.4 Modules

As you start to write bigger programs, you’ll want to keep the procedure definitions in multiple
files, grouped together according to what they do. So, for example, I might package a set of utility
functions together into a single file, called utility.py. This file is called a module in Python.

Now, if I want to use those procedures in another file, or from the the Python shell, I'll need to say
import utility

Now, if I have a procedure that file called foo, I can use it in this program with the name
utility.foo. You can read more about modules in the Python documentation.

6.01, Spring Semester, 2008—Course notes for Week 1 18

1.5 Interaction and Debugging

We encourage you to adopt an interactive style of programming and debugging. Use the Python
shell a lot. Write small pieces of code and test them. It’s much easier to test the individual pieces
as you go, rather than to spend hours writing a big program, and then find it doesn’t work, and
have to sift through all your code, trying to find the bugs.

But, if you find yourself in the (inevitable) position of having a big program with a bug in it, don’t
despair. Debugging a program doesn’t require brilliance or creativity or much in the way of insight.
What it requires is persistence and a systematic approach.

First of all, have a test case (a set of inputs to the procedure you're trying to debug) and know
what the answer is supposed to be. To test a program, you might start with some special cases:
what if the argument is 0 or the empty list? Those cases might be easier to sort through first (and
are also cases that can be easy to get wrong). Then try more general cases.

Now, if your program gets your test case wrong, what should you do? Resist the temptation to
start changing your program around, just to see if that will fix the problem. Don’t change any code
until you know what’s wrong with what you're doing now, and therefore know that the change you
make is going to correct the problem.

Ultimately, for debugging big programs, it’s most useful to use a software development environment
with a serious debugger. But these tools can sometimes have a steep learning curve, so in this class
we’ll learn to debug systematically using “print” statements.

Start putting print statements at all the interesting spots in your program. Print out intermediate
results. Know what the answers are supposed to be, for your test case. Run your test case, and
find the first place that something goes wrong. You’ve narrowed in on the problem. Study that
part of the code and see if you can see what’s wrong. If not, add some more print statements, and
run it again. Don’t try to be smart....be systematic and indefatigable!

You should learn enough of Python to be comfortable writing basic programs, and to be able to
efficiently look up details of the language that you don’t know or have forgotten.

2 Procedures

In Python, the fundamental abstraction of a computation is as a procedure (other books call them
“functions” instead; we’ll end up using both terms). A procedure that takes a number as an
argument and returns the argument value plus 1 is defined as:

def f(x):
return x + 1

The indentation is important here, too. All of the statements of the procedure have to be indented
one level below the def. It is crucial to remember the return statement at the end, if you want
your procedure to return a value. So, if you defined f as above, then played with it in the shell,*
you might get something like this:

4Although you can type procedure definitions directly into the shell, you won’t want to work that way, because
if there’s a mistake in it, you’ll have to type the whole thing in again. Instead, you should type your procedure
definitions into a file, and then get Python to evaluate them. Look at the documentation for the programming
environment we’re using for an explanation of how to do that.

6.01, Spring Semester, 2008—Course notes for Week 1 19

>>> f

<function f at 0x82570>
>>> f(4)

5

>>> f(£(£(4)))

7

>>>

If we just evaluate £, Python tells us it’s a function. Then we can apply it to 4 and get 5, or apply
it multiple times, as shown.

What if we define

def g(x):
x + 1

Now, when we play with it, we might get something like this:

>>> g(4)
>>> g(g(4))
Traceback (most recent call last):
File "<stdin>", line 1, in 7
File "<stdin>", line 2, in g
TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’
>>>

What happened!! First, when we evaluated g(4), we got nothing at all, because our definition of g
didn’t return anything. Well...strictly speaking, it returned a special value called None, which the
shell doesn’t bother printing out. The value None has a special type, called NoneType. So, then,
when we tried to apply g to the result of g(4), it ended up trying to evaluate g(None), which made
it try to evaluate None + 1, which made it complain that it didn’t know how to add something of
type NoneType and something of type int.

Whenever you ask Python to do something it can’t do, it will complain. You should learn to read
the error messages, because they will give you valuable information about what’s wrong with what
you were asking for.

Print vs Return Here are two different function definitions:

def f1(x):
print x + 1
def f2(x):
return x + 1

What happens when we call them?

>>> £1(3)
4
>>> £2(3)
4

6.01, Spring Semester, 2008—Course notes for Week 1 20

It looks like they behave in exactly the same way. But they don’t, really. Look at this example:

>>> print (£1(3))
4

None

>>> print (£2(3))
4

In the case of £1, the function, when evaluated, prints 4; then it returns the value None, which is
printed by the Python shell. In the case of £2, it doesn’t print anything, but it returns 4, which is
printed by the Python shell. Finally, we can see the difference here:

>>> f1(3) + 1
4
Traceback (most recent call last):
File "<stdin>", line 1, in 7
TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’
>>> f2(3) + 1
5

In the first case, the function doesn’t return a value, so there’s nothing to add to 1, and an error is
generated. In the second case, the function returns the value 4, which is added to 1, and the result,
5, is printed by the Python read-eval-print loop.

The book How to Think Like a Computer Scientist, which we recommend reading, is translated
from a version for Java, and it has a lot of print statements in it, to illustrate programming
concepts. But for just about everything we do, it will be returned values that matter, and printing
will be used only for debugging, or to give information to the user.

3 Execution model

You all have an informal understanding of what happens when your programs are executed. Usually,
the informal understanding is enough to let you write effective programs. But it’s useful to really
understand what’s going on, both because the principles are interesting and important and because
it will help you predict what your program will do if it’s more complicated or differently structured
than usual.

We'll explore exactly what happens when a Python program is executed, in the sections below.

3.1 Environments

The first thing we have to understand is the idea of binding environments (we’ll often just call them
environments; they are also called namespaces and scopes). An environment is a stored mapping
between names and entities in a program. The entities can be all kinds of things: numbers, strings,
lists, procedures, objects, etc. In Python, the names are strings and environments are actually
dictionaries, which we’ve already experimented with.

Environments are used to determine values associated with the names in your program. There are
two operations you can do to an environment: add a binding, and look up a name. You do these
things implcitly all the time in programs you write. Consider a file containing

6.01, Spring Semester, 2008—Course notes for Week 1 21

a=>5
print a

The first statement, a = 5, creates a binding of the name a to the value 5. The second statement
prints something. First, to decide that it needs to print, it looks up print and finds an associated
built-in procedure. Then, to decide what to print, it evaluates the associated expression. In this
case, the expression is a name, and it is evaluated by looking up the name in the environment and
returning the value it is bound to (or generating an error if the name is not bound).

In Python, there are environments associated with each module (file) and one called __builtin__
that has all the procedures that are built into Python. If you do

>>> import __builtin__
>>> dir(__builtin__)

you’ll see a long list of names of things (like >sum’), which are built into Python, and whose names
are defined in the builtin module. You don’t have to type import __builtin__; as we’ll see below,
you always get access to those bindings. You can try importing math and looking to see what
names are bound there.

Another operation that creates a new environment is a function call. In this example,

def f(x):
print x
>>> £(7)

when the function f is called with argument 7, a new local environment is constructed, in which
the name x is bound to the value 7.

So, what happens when Python actually tries to evaluate print x? It takes the symbol x and has
to try to figure out what it means. It starts by looking in the local environment, which is the one
defined by the innermost function call. So, in the case above, it would look it up and find the value
7 and return it.

Now, consider this case:

def f(a):
def g(x):
print x, a
return x + a
return g(7)
>>> £(6)

What happens when it’s time to evaluate print x, a? First, we have to think of the environments.
The first call, £(6) establishes an environment in which a is bound to 6. Then the call g(7)
establishes another environment in which x is bound to 7. So, when needs to print x it looks in the
local environment and finds that it has value 7. Now, it looks for a, but doesn’t find it in the local
environment. So, it looks to see if it has it available in an enclosing environment; an environment
that was enclosing this procedure when it was defined. In this case, the environment associated

6.01, Spring Semester, 2008—Course notes for Week 1 22

with the call to f is enclosing, and it has a binding for a, so it prints 6 for a. So, what does f (6)
return? 13.

You can think of every environment actually consisting of two things: (1) a dictionary that maps
names to values and (2) an enclosing environment.

If you write a file that looks like this:

b=23
def f(a):
def g(x):

print x, a, b
return x + a + b
return g(7)

>>> £(6)
7 6 3
16

When you evaluate b, it won’t be able to find it in the local environment, or in an enclosing
environment created by another procedure definition. So, it will look in the global environment.
The name global is a little bit misleading; it means the environment associated with the file. So, it
will find a binding for b there, and use the value 2.

One way to remember how Python looks up names is the LEGB rule: it looks, in order, in the
Local, then the FEnclosing, then the Global, then the Builtin environments, to find a value for a
name. As soon as it succeeds in finding a binding, it returns that one.

We have seen two operations that cause bindings to be created: assignments, and function calls.
While we're talking about assignments, here’s a nice trick, based on the packing and unpacking of
tuples. First, we have to teach you about tuples, which are like lists, but whose contents can’t be
changed once they are created. To make a tuple, you use the comma operator:

>>x =1, 2, 3

>>> x

(1, 2, 3)
>>> x[1]
2

One slightly weird-looking thing is that the way to make a tuple with a single element is to use a
single comma (not to put it inside round parentheses; parentheses are just used for grouping not
for constructing tuples). So,

>>>y =1,
>>> y

(1,)

>>> len(y)
1

Now, here’s the cool assignment trick:

6.01, Spring Semester, 2008—Course notes for Week 1 23

>>>a, b, c=1, 2, 3
>>> a

1

>>> b

2

>>> ¢

3

Or, with lists,

>>> [a, b, c] = [1, 2, 3]
>>> a

1

>>> b

2

>>> ¢

3

When you have a list (or a tuple) on the left-hand side of an assignment statement, you have to
have a list (or tuple) of matching structure on the right-hand side. Then Python will “unpack”
them both, and assign to the individual components of the structure on the left hand side. You
can get fancier with this method:

thing = [8, 9, [1, 2], ’John’, [33.3, 44.4]]
>>> [a, b, ¢, d, [el, e2]] = thing

>>> ¢

[1, 2]

>>> el

33.299999999999997

Bindings are also created when you execute an import statement. If you execute
import math

Then the math module is loaded and the name math is bound, in the current environment, to the
math module. No other names are added to the current environment, and if you want to refer to
internal names in that module, you have to qualify them, as in math.sqrt. If you execute

from math import sqrt

then, the math module is loaded, and the name sqrt is bound, in the current environment, to
whatever the the name sqrt is bound to in the math module. But note that if you do this, the
name math isn’t bound to anything, and you can’t access any other procedures in the math module.

Another thing that creates a binding is the definition of a function: that creates a binding of the
function’s name, in the environment in which it was created, to the actual function.

Finally, bindings are created by for statements and list comprehensions; so, for example,

6.01, Spring Semester, 2008—Course notes for Week 1 24

a=1
b=2
c =3
def d(a):
c=5
from math import pi
def e(x):
for i in range(b):
print a, b, ¢, x, i, pi, 4, e
e(100)

>>> d4(1000)
1000 2 5 100 O 3.14159265359 <function d at 0x4e3f0> <function e at Ox4ecf0>
1000 2 5 100 1 3.14159265359 <function d at 0x4e3f0> <function e at Ox4ecfO>

Figure 4: Code and what it prints

for element in 1listOfThings:
print element

creates successive bindings for the name element to the elements in 1ist0fThings.

Figure 5 shows the state of the environments when the print statement in the example code shown
in figure 4 is executed. Names are first looked for in the local scope, then its enclosing scope (if
there were more than one enclosing scope, it would continue looking up the chain of enclosing
scopes), and then in the global scope.

Local versus global references There is an important subtlety in the way names are handled
in handled in the environment created by a procedure call. When a name that is not bound in
the local environment is referred to, then it is looked up in the enclosing, global, and built-in
environments. So, as we’ve seen, it is fine to have

a=2
def b(Q):
print a

When a name is assigned in a local environment, a new binding is created for it. So, it is fine to
have

a =2

def b():
a=3
c=4

print a, c

Both assignments cause new bindings to be made in the local environment, and it is those bindings
that are used to supply values in the print statement.

But here is a code fragment that causes trouble:

6.01, Spring Semester, 2008—Course notes for Week 1 25

global
a 1
b 2
C 3
d <proc>
a 1000
C 5
pi 3.14159
e <proc>
enclosing
environment
local
X 100
i 0

Figure 5: Binding environments that were in place when the first print statement in figure 4 was
executed.

a =3

def b():
a=a+1
print a

It seems completely reasonable, and you might expect it to print 4. But, instead, it generates an
error if we try to call b. What’s going on?? It all has to do with when Python decides to add a
binding to the local environment. When it sees this procedure definition, it sees that the name a
is assigned to, and so, at the very beginning, it puts an entry for a in the local environment. Now,
when it’s time to execute the statement

it starts by evaluating the expression on the right hand side: a + 1. When it tries to look up the
name a in the local environment, it finds that it has been added to the environment, but hasn’t
yet had a value specified. So it generates an error.

We can still write code to do what we intended (write a procedure that increments a number named
in the global environment), by using the global declaration:

a =3

def b(Q:
global a
a=a+1
print a

>>> b()

4

>>> b()

6.01, Spring Semester, 2008—Course notes for Week 1 26

The statement global a asks that a new binding for a not be made in the local environment.
Now, all references to a are to the binding in the global environment, and it works as expected. In
Python, we can only make assignments to names in the local scope or in the global scope, but not
to names in an enclosing scope. So, for example,

def outer():
def inner():

a=a+1
a=20
inner ()

In this example, we get an error, because Python has made a new binding for a in the environment
for the call to inner. We'd really like for inner to be able to see and modify the a that belongs to
the environment for outer, but there’s no way to arrange this.

3.2 Evaluating expressions

Now, we're ready to understand what Python does when it evaluates an expression, such as £ (3,
g(a, 5)). The evaluator takes an expression and an environment and returns a value; the value can
be a number, string, dictionary, list, procedure, etc. Evaluation in Python can be nicely described
as a recursive process.

There are two base cases:

1. If the expression is a constant (number or string), then the value is just that constant value;

2. If the expression is a name, then the value is the result of looking the name up in the local,
enclosing, global, and built-in environments until the first binding is found, and the associated
value is returned.

In the recursive case, we have the application of a function to some arguments.

e We start by evaluating the expressions that describe the function and each of the arguments
(by making a recursive call to the evaluator). At this point, we have our hands on an actual
function and a set of values that should be passed in as values to the function.

e Next, we establish a new environment, in which the formal parameters (the argument names
in the definition) of the function are bound to the values we just computed.

e Now, we evaluate the body of the procedure in that new environment (by making a recursive
call to the evaluator)

This is a beautiful process that is actually quite easy to implement for simple functional languages.

In Python, our expressions often look more like
3 + (ax4)

The infix operators + and * are just special syntax, and that expression gets converted internally
by Python into something like

operator.plus(3,operator.times(a,4))

before it is evaluated in the way described above.

6.01, Spring Semester, 2008—Course notes for Week 1 27

3.3 Special forms

Of course, Python is more than expression evaluation and assignment. In order to have a truly
general-purpose programming language, we need at least one more construct: if. The important
thing about if is that it either evaluates one set of statements or another depending on whether
the condition is true. You can’t make that happen simply by evaluating functions using the model
above.

Python supplies all sorts of other handy things, like loops, and list comprehensions. We could
precisely specify the execution model for each of these statements (and such a language specification
exists for Python), and then it’s a medium-sized but well-defined job to write an interpreter for
Python that does what the shell does: reads in Python programs and does what they specify.

4 Lists

Python has a built-in list data structure that is easy to use and incredibly convenient. So, for
instance, you can say

>>>y = [1, 2, 3]
>>> y[0]

1

>>> y[2]

3

>>> len(y)

3

>>> y.append (4)
>>> y

(1, 2, 3, 4]
>>> y[1] = 100
>>> y

[1, 100, 3, 4]
>>>

A list is written using square brackets, with entries separated by commas. You can get elements
out by specifying the index of the element you want in square brackets, but note that the indexing
starts with 0!

You can add elements using append (and in other ways, which we’ll explore in the exercises). The
syntax that is used to append an item to a list, y.append(4), is a little bit different than anything
we’ve seen before. It’s an example of Python’s object-oriented programming facilities, which we’ll
study in detail later. Roughly, you can think of it ask asking the object y for its idea of how to
append an item, and then applying it to the integer 4.

You can change an element of a list by assigning to it: on the left-hand side of the assignment
statement is y[1]. Something funny is going on here, because if it were on the right-hand side of
an assignment statement, the expression y[1] would have the value 2. But it means something
different on the left-hand side: it names a place where we can store a value (just as using the name
of a variable x on the left-hand side is different from using it on the right-hand side). So, y[1] =
100 changes the value of the second element of y to be 100.

6.01, Spring Semester, 2008—Course notes for Week 1 28

In Python, you can also make something like a list, but called a tuple, using round parentheses
instead of square ones: (1, 2, 3). Tuples cannot have their elements changed, and also cause
some syntactic confusion, so we’ll mostly stick with lists.

4.1 Iteration over lists

What if you had a list of integers, and you wanted to add them up and return the sum? Here are
a number of different ways of doing it.’

First, here is something like you might have learned to write in a Java class (actually, you would
have used for, but Python doesn’t have a for that works like the one in C and Java).

def addList1(1):

sum = 0

listLength = len(1)

i=0

while (i < listLength):
sum = sum + 1[i]
i=1i+1

return sum

It increments the index i from 0 through the length of the list - 1, and adds the appropriate element
of the list into the sum. This is perfectly correct, but pretty verbose and easy to get wrong.

def addList2(1):
sum = 0
for i in range(len(l)):
sum = sum + 1[i]
return sum

Here’s a version using Python’s for loop. The range function returns a list of integers going from
0 to up to, but not including, its argument. So range(3) returns (0, 1, 2). A loop of the form

for x in 1:
something

will be executed once for each element in the list 1, with the variable x containing each successive
element in 1 on each iteration. So,

for x in range(3):
print x

For any program you’ll ever need to write, there will be a huge number of different ways of doing it. How should
you choose among them? The most important thing is that the program you write be correct, and so you should
choose the approach that will get you to a correct program in the shortest amount of time. That argues for writing
it in the way that is cleanest, clearest, shortest. Another benefit of writing code that is clean, clear and short is that
you will be better able to understand it when you come back to it in a week or a month or a year, and that other
people will also be better able to understand it. Sometimes, you’ll have to worry about writing a version of a program
that runs very quickly, and it might turn out that in order to make that happen, you’ll have to write it less cleanly or
clearly or briefly. But it’s important to have a version that’s correct before you worry about getting one that’s fast.

6.01, Spring Semester, 2008—Course notes for Week 1 29

will print 0 1 2. Back to addList2, we see that i will take on values from 0 to the length of the
list minus 1, and on each iteration, it will add the appropriate element from 1 into the sum. This
is more compact and easier to get right than the first version, but still not the best we can do!

def addList3(1):
sum = 0
for v in 1:
sum = sum + Vv
return sum

This one is even more direct. We don’t ever really need to work with the indices. Here, the variable
v takes on each successive value in 1, and those values are accumulated into sum.

For the truly lazy, it turns out that the function we need is already built into Python. It’s called
sum:

def addList4(1):
return sum(l)

Now, what if we wanted to increment each item in the list by 1?7 It might be tempting to take
an approach like the one in addList3, because it was so nice not to have to mess around with
indices. Unfortunately, if we want to actually change the elements of a list, we have to name them
explicitly on the left-hand side of an assignment statement, and for that we need to index them.
So, to increment every element, we need to do something like this:

def incrementElements(1l):
for i in range(len(1l)):
1[i] = 1[i] + 1

We didn’t return anything from this procedure. Was that a mistake? What would happen if you
evaluated the following three expressions in the Python shell?

>>>y = [1, 4, 6]
>>> incrementElements(y)
>>> y

Later, when we look at higher-order functions, we’ll see another way to do both addList and
incrementElements, which many people find more beautiful than the methods shown here.

5 Functional Style

In the functional programming style, one tries to use a very small set of primitives and means of
combination. We’ll see that recursion is a very powerful primitive, which could allow us to dispense
with all other looping constructs (while and for) and results in code with a certain beauty.

Another element of functional programming style is the idea of functions as first-class objects. That
means that we can treat functions or procedures in much the same way we treat numbers or strings
in our programs: we can pass them as arguments to other procedures and return them as the results
from procedures. This will let us capture important common patterns of abstraction and will also
be an important element of object-oriented programming.

6.01, Spring Semester, 2008—Course notes for Week 1 30

5.1 Basics

But let’s begin at the beginning. The primitive elements in the functional programming style are
basic functions. They’re combined via function composition: so, for instance f(x, g(x, 2)) is a
composition of functions. To abstract away from the details of an implementation, we can define a
function

def square(x):
return x*x

Or

def average(a,b):
return (at+b)/2.0

And now, having defined those functions, we can use them exactly as if they were primitives. So,
for example, we could compute the mean square of two values as

average (square(7) ,square(11))
We can also construct functions “anonymously” using the lambda constructor:

>>> f = lambda x: x*x

>>> f

<function <lambda> at Ox4ecf0>
>>> £(4)

16

The word lambda followed by a sequence of variables separated by commas, then a colon, then
a single expression using those variables, defines a function. It doesn’t need to have an explicit
return; the value of the expression is always returned. A single expression can only be one line of
Python, such as you could put on the right hand side of an assignment statement. Here are some
other examples of functions defined using lambda.

This one uses two arguments.
>>> g = lambda x,y : X * ¥y

>>> g(3, 4)
12

You don’t need to name a function to use it. Here we construct a function and apply it all in one
line:

>>> (lambda x,y : x * y) (3, 4)
12

Here’s a more interesting example. What if you wanted to compute the square root of a number?
Here’s a procedure that will do it:

6.01, Spring Semester, 2008—Course notes for Week 1 31

def sqrt(x):
def goodEnough(guess):
return abs(x-square(guess)) < .0001
guess = 1.0
while not goodEnough(guess):
guess=average (guess,x/guess)
return guess

>>>sqrt (2)
1.4142156862745097

This is an ancient algorithm, due to Hero of Alexandria.® It is an iterative algorithm: it starts with
a guess about the square root, and repeatedly asks whether the guess is good enough. It’s good
enough if, when we square the guess, we are close to the number, x, that we’re trying to take the
square root of. If the guess isn’t good enough, we need to try to improve it. We do that by making
a new guess, which is the average of the original guess and x / guess.

How do we know that this procedure is ever going to finish? We have to convince ourself that,
eventually, the guess will be good enough. The mathematical details of how to make such an
argument are more than we want to get into here, but you should at least convince yourself that
the new guess is closer to x than the previous one was. This style of computation is generally quite
useful. We’ll see later in this chapter how to capture this common pattern of function definition
and re-use it easily.

Note also that we’ve defined a function, goodEnough, inside the definition of another function. We
defined it internally because it’s a function that we don’t expect to be using elsewhere; but we think
naming it makes our program for sqrt easier to understand. We’ll study this style of definition in
detail in the next chapter. For now, it’s important to notice that the variable x inside goodEnough
is the same x that was passed into the sqrt function.

5.2 List Comprehensions

Python has a very nice built-in facility for doing many interative operations called list comprehen-
stons. The general template is

Lexpr for var in list]

where var is a single variable, list is an expression that results in a list, and expr is an expression
that uses the variable var. The result is a list, of the same length as list, which is obtained by
successively letting var take values from list, and then evaluating expr, and collecting the results
into a list.

Whew. It’s probably easier to understand it by example.

>>> [x/2.0 for x in [4, 5, 6]]

[2.0, 2.5, 3.0]

>>> [y**2 + 3 for y in [1, 10, 1000]]
[4, 103, 1000003]

5Hero of Alexandria is involved in this course in multiple ways. We’ll be studying feedback later on in the course,
and Hero was the inventor of several devices that use feedback, including a self-filling wine goblet. Maybe we’ll assign
that as a final project...

6.01, Spring Semester, 2008—Course notes for Week 1 32

>>> [a[0] for a in [[’Hal’, ’Abelson’],[’Jacob’,’White’],
[’Leslie’,’Kaelbling’]]]

[’Hal’, ’Jacob’, ’Leslie’]

>>> [a[0]+’!’ for a in [[’Hal’, ’Abelson’],[’Jacob’,’White’],

[’Leslie’,’Kaelbling’]]]

[’Hal!’, ’Jacob!’, ’Leslie!’]

>>> [x/2.0 for x in [4, 5, 6]]

[2.0, 2.5, 3.0]

Another useful feature of list comprehensions is that they implement a common functional-programming
capability of filtering. Imagine that you have a list of numbers and you want to construct a list
containing just the ones that are odd. You might write

>>> nums = [1, 2, 5, 6, 88, 99, 101, 10000, 100, 37, 101]
>>> [x for x in nums if x%2==1]
[1, 5, 99, 101, 37, 101]

And, of course, you can combine this with the other abilities of list comprehensions, to, for example,
return the squares of the odd numbers:

>>> [x*x for x in nums if x%2==1]
[1, 25, 9801, 10201, 1369, 10201]

6 Recursion

In the previous example, we defined a sqrt function, and now we can use it without remembering
or caring about the details of how it is implemented. We sometimes say that we can treat it as a
black bor, meaning that it is unnecessary to look inside it to use it. This is crucial for maintaining
sanity when building complex pieces of software. An even more interesting case is when we can
think of the procedure that we’re in the middle of defining as a black box. That’s what we do when
we write a recursive procedure.

Recursive procedures are ways of doing a lot of work. The amount of work to be done is controlled
by one or more arguments to the procedure. The way we are going to do a lot of work is by calling
the procedure, over and over again, from inside itself! The way we make sure this process actually
terminates is by being sure that the argument that controls how much work we do gets smaller
every time we call the procedure again. The argument might be a number that counts down to
zero, or a string or list that gets shorter.

There are two parts to writing a recursive procedure: the base case(s) and the recursive case.
The base case happens when the thing that’s controlling how much work you do has gotten to its
smallest value; usually this is 0 or the empty string or list, but it can be anything, as long as you
know it’s sure to happen. In the base case, you just compute the answer directly (no more calls to
the recursive function!) and return it. Otherwise, you're in the recursive case. In the recursive case,
you try to be as lazy as possible, and foist most of the work off on another call to this function, but
with one of its arguments getting smaller. Then, when you get the answer back from the recursive
call, you do some additional work and return the result.

Here’s an example recursive procedure that returns a string of n 1’s:

6.01, Spring Semester, 2008—Course notes for Week 1 33

def bunchalOnes(n):
if n ==
return "
else:
return bunchaOnes(n-1) + “¢1°?

The thing that’s getting smaller is n. In the base case, we just return the empty string. In the
recursive case, we get someone else to figure out the answer to the question of n-1 ones, and then
we just do a little additional work (adding one more € ¢1’’ to the end of the string) and return it.

Here’s another example. It’s kind of a crazy way to do multiplication, but logicians love it.

def mult(a,b):
if a==0:
return O
else:
return b + mult(a-1,b)

Trace through an example of what happens when you call mult (3, 1), by adding a print statement
as the first line of the function that prints out its arguments, and seeing what happens.

Here’s a more interesting example of recursion. Imagine we wanted to compute the binary repre-
sentation of an integer. For example, the binary representation of 145 is ’10010001°. Our procedure
will take an integer as input, and return a string of 1’s and 0’s.

def bin(n):
if n ==
return ’0’
elif n ==
return ’1°
else:

return bin(n/2) + bin(n%2)

The easy cases (base cases) are when we're down to a 1 or a 0, in which case the answer is obvious.
If we don’t have an easy case, we divide up our problem into two that are easier. So, if we convert
n/2 into a string of digits, we’ll have all but the last digit. And n%2 is 1 or 0 depending on whether
the number is even or odd, so one more call of bin will return a string of ’0” or ’1’. The other thing
that’s important to remember is that the + operation here is being used for string concatenation,
not addition of numbers.

How do we know that this procedure is going to terminate? We know that the number it’s operating
on is getting smaller and smaller, and will eventually be either a 1 or a 0, which can be handled by
the base case.

You can also do recursion on lists. Here’s another way to do our old favorite addList:

def addList6(list):
if list == []:
return O
else:
return 1ist[0] + addList6(list[1:])

6.01, Spring Semester, 2008—Course notes for Week 1 34

There’s a new bit of syntax here: 1list[1:] gives all but the first element of 1ist. Go read the
section in the Python documentation on subscripts to see how to do more things with list subscripts.

The addList procedure consumed a list and produced a number. The incrementElements1 pro-
cedure below shows how to use recursion to do something to every element of a list and make a
new list containing the results.

def incrementElementsi(elts):
if elts == []:
return []
else:
return [elts[0]+1] + incrementElementsi(elts[1:])

7 Shared structure

When we work with lists, it is important to know when we are working with multiple references to
the same list. You can think of a list as a container with some elements in it. It is possible to have
two different containers with exactly the same elements. Let’s explore these ideas a bit.

In the listing below, a and b are names that both refer to the same list. So, if we change a, we
change b.

a=[1, 2, 3]

>>> b = a

>>> b

[1, 2, 3]

>>> a[1] = 100
>>> a

[1, 100, 3]
>>> b

[1, 100, 3]

Now, let’s make a new list with the same elements, and see what happens when we make various
comparisons:

>>> ¢ = [1, 100, 3]
>>> a ==

True

>>> a == ¢C

True

>>> a is b

True

>>> a is ¢

False

There are really two different equality tests in Python. The == test, when applied to lists, tests
to see if the contents of the container are the same. So a == c is true. But is tests to see if the
actual containers are the same. In our case, a is the same as b, but not the same as c.

6.01, Spring Semester, 2008—Course notes for Week 1 35

It’s important to keep track of which operations on lists actually change the existing list and which
make a copy of it. We can see from the following transcript that when we use * to append several
copies of a list, it makes all new lists structures:

>>> d = 2*a

>>> d

[1, 100, 3, 1, 100, 3]
>>> a[1] = 9

>>> a

[1, 9, 3]

>>> d

[1, 100, 3, 1, 100, 3]

But if we make a list containing a, twice, the list has the same container in it twice, and it doesn’t
copy the list structure.

>>> e = [a, a]

>>> e

(f1, 9, 31, [1, 9, 311

>>> a[1] = 200

>>> e

({1, 200, 3], [1, 200, 3]]

Note that 2*[a] is the same as [a,a].

You can experiment with other list-manipulation procedures in Python, to see whether they make
copies of lists or just refer to the containers. You will find that append, sort and reverse actually
change the structure of the lists they operate on. However, slicing (getting a sub-list) gives you a
whole new list structure. So, changing one of y or x in the example below won’t change the other
one.

>>> x
>>> y
>>> y
[2, 3]
>>> x[2] = 100
>>> x

[1, 2, 100]
>>> y

[2, 3]

(1, 2, 3]
x[1:]

This leads us to an important idea: if you have a list named z and you want to make a copy of it
(because, for example, you're about to change it, but you want the original around, too), then you
can just do z[:], and you’ll get a completely new container with the same elements in it.

z = [1, 2’ 3’ 4]
>>> zcopy = z[:]
>>> zcopy

6.01, Spring Semester, 2008—Course notes for Week 1 36

[1, 2, 3, 4]
>>> z[0] = ’ha’
>>> z

[’ha’, 2, 3, 4]
>>> zcopy

(1, 2, 3, 4]

One more thing to know about and watch out for is procedures that actually change their arguments.
In pure functional programming, procedures never change anything; they always return a newly
made structure or part of an old structure. In a pure functional program, in fact, it doesn’t matter
whether your structures are shared. Any computation that can be done by a computer can be done
by a pure functional program with no assignment statements or changes to structures, but it can
be wildly inefficient, in many cases, to do so.

So, we may end up writing procedures that change the values of parameters passed into them. In
fact, you cannot change the entire value of a parameter; so, for instance, this changer procedure
doesn’t actually change anything (as we’ll see next week, it makes a new internal variable called

X).

>>> a =6

>>> def changer(x):
.. x =4

>>> a

6

>>> changer(a)

>>> a

6

However, we can change values contained in a list structure that is passed in as a parameter:

>>> def changeFirstEntry(x):
x[0] = ’nya nya’

>>> b = [1, 2, 3]

>>> changeFirstEntry (b)

>>> b

[’nya nya’, 2, 3]

There is nothing wrong with doing this; in fact it’s often a good way to structure programs. But
whenever you write a procedure that changes the contents of one of its arguments, you should take
care to document that fact as obviously as possible.

