
6.01, Spring Semester, 2008—Sample Midterm Exam—Distributed March 16 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.01—Introduction to EECS I
Spring Semester, 2008

Sample Midterm Exam—Distributed March 16

Ground Rules

This is a sample midterm to help you study and to give you a sense of what kinds of problems to
expect on the real midterm. You can pick up the midterm in 34-501 (the 6.01 lab) on Wednesday,
May 19, any time between 8:30AM and 7:00PM, and return it within 3 hours after you pick it up.

If you plan to print out your answers (good idea) we suggest that you work out the mechanics of
how you are going to print before you pick up the exam. “My dog ate my printer” is not a valid
excuse for being late.

When you pick the exam up, you’ll see the following instructions:

• Read through this exam and ask any questions you have before you leave. If you find that
you have a question after that, try to pick your own answer, and write down what assumption
you’re making. We will not answer your questions after you’ve left the room.

• Turn the exam in to room 34-501 (the 6.01 lab) at most three hours after you pick it up. You
may turn in your solution early, but late papers will be penalized 10% of the grade value for
every ten minutes you are late.

• For the problems that ask you to write Python code, you should just think it through and
write down the code. You must not try to actually debug it (it will take too long). Don’t
spend time trying to be sure the syntax is correct. It’s more important to communicate your
ability to think algorithmically than to worry about the fine-grained details of syntax. Be
sure to add comments that explain what you’re trying to do.

• We expect you to spend less than an hour per question. The extra time is to let you relax
and think.

• Your answer may be handwritten or typed; it should be legible in either case. We reserve the
right to refuse to grade illegible papers.

• Label your answers clearly, we won’t look through long printouts for something that looks
like an answer.

• You may read anything you like (labs, books, the web) during the exam, but you may not
communicate with anyone else.

• When you turn in your paper, the sheets must be stapled together and you must have your
name and section number on each sheet. Papers that do not do this will not be graded and
you will not get credit for the exam.

6.01, Spring Semester, 2008—Sample Midterm Exam—Distributed March 16 2

Programming

Soar, as you recall, contains a procedure sonarDistances(), which returns the list of distances
reported by the robot sonars. For this problem, assume that there is only one sonar, and that the
procedure readSonar() returns that sonar reading as a single number. You’ve undoubtedly noticed
that the robot sonars sometimes give flaky readings. So it might be useful to have a procedure
like readSonar, but which returns the entire history of sonar readings, or the average of the sonar
readings over several calls, or the minimum and maximum readings. In this problem, we’ll ask you
to implement such a procedure. Please use only the basic functions built into Python (e.g., don’t
use fancy packages you might find on the Web).

We’ll start with the following class:

class RangeTracker:

def __init__(self):

self.saved = []

def values(self):

self.saved.append(readSonar ())

return self.saved

The RangeTracker class behaves as follows (assuming that the first few sonar readings are 10, 9,
11, and 12).

>>> rt = RangeTracker ()

>>> rt.values ()

[10]

>>> rt.values ()

[10, 9]

>>> rt.values ()

[10, 9, 11]

>>> rt.values ()

[10, 9, 11, 12]

6.01, Spring Semester, 2008—Sample Midterm Exam—Distributed March 16 3

Question 1: Add methods to the RangeTracker class to return the maximum and minimum of
the saved values (one method for each).

Question 2: The mean, or average, of a set of N numbers x1, . . . , xN is the sum of the x’s over
the number of x’s:

x̄ =
1

N

N∑
i=1

xi .

Add a method to the RangeTracker class that returns the mean of the sonar readings.

Question 3: The standard deviation of a set of numbers is a measure of how spread out the
numbers are around the mean. It can be computed as√√√√√ 1

N− 1

N∑
i=1

(xi − x̄)2 .

Add a method to the RangeTracker class that returns the standard deviation of the sonar
readings.

Question 4: Add a method to the RangeTracker class that takes a function f as an argument,
and returns the mean of the values of f applied to each of the x values. That is:

1

N

N∑
i=1

f(xi) .

Question 5: The above parts of the problem asked you to add new methods to the
RangeTracker class. An alternative way to add new methods—without modifying the orig-
inal class—is to use inheritance. Define a new class called TrackerWithReset, a subclass
of RangeTracker, that has a reset method that reinitializes the list of saved values to the
empty list.

In assessing your performance on this programming problem, we’re interested not only in whether
your programs return the right answers, but in whether your code is and shows good style. The
definition of “good style” is somewhat idiosyncratic, but for us, it includes things like

• Do you reuse pieces of code to achieve compactness and clarity (for example, does your code
for computing the standard deviation make use of your code for computing the mean)?
• Do you take advantage of list comprehension, rather than writing explicit for or while loops?

It is not necessary for you to test and debug your code. We won’t be taking off points for trivial
syntax errors. Similarly, on the final exam, we may ask you to write code, but we certainly won’t
expect you to run and debug it.

Helpful hint: The mean of the set of numbers 1, 2, 3, . . . , 10 is 5.5, and the standard deviation
is 3.02766 .

6.01, Spring Semester, 2008—Sample Midterm Exam—Distributed March 16 4

Feedback control

In lab for week 6, you programmed the robot to drive down the center of a narrow corridor,
maintaining a desired distance desired from the center. You used a control algorithm based on the
error

e[n] = ddesired [n] − d[n] ,

where d[n] is measured distance to the left of the center. You modeled the robot’s dynamics by

d[n] = d[n− 1] + VδTθ[n− 1]

θ[n] = θ[n− 1] + δTΩ[n− 1]

where θ[n] is the angle of the robot heading, Ω[n] is the robot’s angular velocity, V is the robot’s
forward speed, and δT is the time step. You then implemented a control law that produced values
for Ω[n].

Suppose Ω[n] is specified according to the control law

Ω[n] = Ke[n− 2] ,

that is, Ω is proportional to the error two time-steps ago.

Question 6: What is the system function for the whole system (which takes dDesired as input
and generates d as output)?

Question 7: 2. Suppose we choose K so that KVδ2T = 1. What are the poles? Is the system
stable? How about for KVδ2T = −1?

Note: The Python root finder we used in class can compute roots of polynomials only up to third
order. There are some simple root finders on the Web, for example, at
http://xrjunque.nom.es/precis/rootfinder.aspx

6.01, Spring Semester, 2008—Sample Midterm Exam—Distributed March 16 5

Terminating State Machines

Write a terminating state machine class that inherits from the TBDrive class that you wrote in PS
4 and which does the same thing, that is, move the robot a specified distance. However, it should
use the action goFast for the first 80% of the displacement and then use the action go for the rest.
Make your new class as simple as possible.

6.01, Spring Semester, 2008—Sample Midterm Exam—Distributed March 16 6

Solution to programming problem

The point of this problem is to see if you can define a class, write simple methods, and use inher-
itance. We also want to know if you’ve learned to use list comprehension and simple functional
programming.

While the answer code we’ve provided here actually runs, we strongly suggest that in doing the
exam you do not attempt to debug your code. You probably won’t have time for that during the
exam, and we won’t be taking off points for minor syntactic errors. Showing that you understand
the basic constructs, and using good style, will be more a important use of your time than rooting
out minor bugs in your code.

Question 1 The two new methods are

def maxval(self):

to return the maximum of the saved values

we simply apply the max function to the list

return max(self.saved)

def minval(self):

similar to max

return min(self.saved)

Note how we used the fact that min and max can take the list of a saved items directly, so that we
did not write a loop. This is an echo of the functional style that is preferred to explicit loops. Note
also that the instance variable is referenced as self.saved, not saved.

Question 2 The code here is

def mean(self):

the average is the sum of the values divide by the

number of values

return sum(self.saved) / float(len(self.saved))

We might also have used functional style here, with add and reduce

return reduce(add ,self.saved)/float(len(self.saved))

Note that in order for this to run, you’d have to import add from Python’s operator package. In
grading, we might penalize people for solving this problem with a while or for loop, even if their
program gave the correct answer. Observe the unfortunate need to convert the denominator to a
float.

Question 3 The code here is:

def stdev(self):

compute the average of the values and the number of values

m = self.mean()

n = len(self.saved)

use map/reduce to compute the sum of the squared differences

sumsq = sum([(x - m)**2 for x in self.saved])

return ((1.0/(n-1))* sumsq)**0.5

6.01, Spring Semester, 2008—Sample Midterm Exam—Distributed March 16 7

We could have written this all in one line, but we defined local variables m for the mean of the
readings and n for the number of readings, to make the code more readable. Readability is always
a good thing to keep in mind when you are writing something for graders, or co-workers, or even
yourself, a few days later, to read. Also, by defining a local variable for the mean, we avoided
re-computing it n times. We used a map/reduce form (expressed as a list comprehension, and the
built-in sum) to compute the sum of the squares.

Question 4 Here the code is

def meanVals(self , f):

use map/reduce to find the sum and then divide to get the mean

return sum([f(x) for x in self.saved])/ float(len(self.saved))

We’re looking to see that you recognize that you can pass a procedure f as an argument. Otherwise,
this is identical to question 2.

Question 5 This is a simple use of inheritance:

class TrackerWithReset(RangeTracker):

a TrackerWithReset is a RangeTracker with an additional reset method

def reset(self):

self.saved = []

6.01, Spring Semester, 2008—Sample Midterm Exam—Distributed March 16 8

Solution to feedback problem

This problem is very similar to what you’ve been doing in lab these past two weeks. The lesson
you should take away from this in studying is that there will be problems closely related to one or
more of the labs.

Question 6: If we use Black’s formula, then the analysis follows the one presented in lecture on
March 11 and in the course notes. If we let Hrobot be the system that relates the distance d to the
turning rate Ω, we have

Hrobot =
d

Ω
=

d

θ
· θ
Ω

=
VδTR
1−R

· δTR
1−R

=
(δT)

2VR2

(1−R)2
.

Then for the overall system we have by Black’s formula:

d

Ddesired
=

HcontrolHrobot

1+HcontrolHrobot

The problem now specifies that
Ω[n] = Ke[n− 2]

i.e.,
Hcontrol = KR2

So putting this together, gives the overall system function as

=
KR2 · (δT)2VR2

(1−R)2

1+ KR2 · (δT)2VR2

(1−R)2

=
K (δT)

2 VR4

1− 2R+R2 + K (δT)
2 VR4

.

Question 7: The poles are the roots of the polynomial we get when we substitute z = 1/R:

1− 2

(
1

z

)
+

(
1

z

)2
+ Kδ2TV

(
1

z

)4
and multiply through by z4:

z4 − 2z3 + z2 + KVδ2T

For KVδ2T = 1 the roots of

z4 − 2z3 + z2 + 1

6.01, Spring Semester, 2008—Sample Midterm Exam—Distributed March 16 9

are two complex pairs p = −0.3± 0.625j and p = 1.3± 0.625j and the system is unstable since the
second pair has magnitude greater than 1.

If KVδ2T = −1 the roots of

z4 − 2z3 + z2 − 1

are two real roots p = −0.618 and p = 1.618 and the complex pair p = 0.5 ± 0.866j. Here, too,
there is a root with magnitude greater than 1, and the system is unstable.

6.01, Spring Semester, 2008—Sample Midterm Exam—Distributed March 16 10

Solution to Terminating State Machine problem

class TBDriveFast (TBDrive):

def currentOutput(self):

if self.done ():

return stop

else:

if poseDist(self.startingPose , self.currentPose) < 0.8* self.d:

return goFast

else:

return go

