
6.01, Spring Semester, 2008—NanoQuiz Week #4 (sections 1 and 2) 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.01—Introduction to EECS I
Spring Semester, 2008

NanoQuiz Week #4 (sections 1 and 2)

Name: Athena userid: @mit.edu

This quiz is due promptly 15 minutes after the start of the lab period.

You may use the weekly assignment handout, but the quiz is otherwise closed book and closed
computer.

1. The makeSumSM procedure returns a state machine whose initial state is 0, and whose output
at time t is the sum of all the inputs from time 0 through time t−1. The makeIncr procedure
takes an initial value as input and returns a state machine whose initial state is the initial
value, and whose output at time t is the input at time t− 1 plus 1. (These are both the same
as the ones from the software lab).

def makeSumSM ():
return PrimitiveSM(lambda s, i: s + i,

lambda s: s,
lambda : 0)

def makeIncr(init = 0):
return PrimitiveSM(lambda s, i: i+1,

lambda s: s,
lambda : init)

Now we serially compose these machines so that the output of the incr machine is the input
of the sum machine, and run it:

m = SerialSM(makeIncr (0), makeSumSM ())
transduce(m, [10, 20, 30, 40])

In the table below, fill out the values of the inputs, states, and outputs of the composite
machine (where output1 is the same as input2).

step input1 state1 output1 state2 output2

0
1
2
3

See other side.



6.01, Spring Semester, 2008—NanoQuiz Week #4 (sections 1 and 2) 2

2. Consider the following code:

class Party:
def __init__(self , food):

self.food = food
self.guestsAtTheParty = []

def addFood(self , newFood ):
self.food.append(newFood)

def welcomeGuest(self , guest):
self.guestsAtTheParty.append(guest)

class InvitationOnlyParty(Party ):
def __init__(self , food , invitedGuests ):

self.invitedGuests = invitedGuests
Party.__init__(self , food)

def welcomeGuest(self , guest):
if guest in self.invitedGuests:

Party.welcomeGuest(self , guest)

Assume we evaluate the code above, and then type the following expressions into Python in
order. Say what Python will print out, in the blank spaces.

(a) > p = Party([’cake’, ’iceCream ’])
> p.welcomeGuest(’Pat’)
> p.welcomGuest(’Kim’)
> p.guestsAtTheParty

(b) > p2 = InvitationOnlyParty ([’cherries ’, ’herring ’],
[’Sydney ’, ’Pat’, ’Michael ’])

> p2.welcomeGuest(’Pat’)
> p2.welcomeGuest(’Kim’)
> p2.guestsAtTheParty


