class TBTurnSmoothly:
 def __init__(self, theta, k = 1.25):
 # remember the turning angle
 self.turn = theta
 # the gain for the controller
 self.k = k

def reset(self):
 (sonars, pose) = collectSensors()
 # initialize the initial and the current angle

def step(self, sensors):
 (sonars, pose) = sensors
 # update the error
 self.error = self.target - pose[2]
 return self.currentOutput()

def currentOutput(self):
 if not self.done():
 # specify the forward and rotational velocity
 return (0.0, self.k*self.error)
 else:
 # stop
 return (0, 0)

def done(self):
 # test we have rotated the desired angle
 return abs(self.error) < .01

The only real change is in the currentOutput method, which before used to use a constant turning rate.

Question 2 (10 points): The basic equations are:

\[
\Theta[n] = \Theta[n - 1] + \delta_t \Omega[n - 1]
\]

\[
\Omega[n] = K(\Theta_{des}[n - 1] - \Theta[n - 1])
\]

The operator version is:

\[(1 - R)\Theta = \delta_t R\Omega\]

\[\Omega = KR(\Theta_{des} - \Theta)\]
Combining we get:

$$\theta[n] - \theta[n-1] + K\delta_T \theta[n-2] = K\delta_T \theta_{des}[n-2]$$

Equivalently:

$$1 - R\theta + K\delta_T R^2 \theta = K\delta_T R^2 \theta_{des}$$

We accepted a number of variations.

Question 3 (10 points): The system function is:

$$\frac{\theta}{\theta_{des}} = \frac{K\delta_T R^2 \theta_{des}}{1 - R\theta + K\delta_T R^2 \theta}$$

Substitute $R = 1/z$ in the denominator polynomial and we get:

$$z^2 - z + K\delta_T$$

The roots of this polynomial are the poles:

$$1 \pm \sqrt{1 - 4K\delta_T}$$

Note that for $K = 0$, one of the poles is 1.0. For $K < 0$, one of the poles is always greater than 1.0. This makes sense since for $K < 0$, the feedback increases the error.

For $\delta_T = 0.2$, for $K = 5$, we have a pole of magnitude 1.0 and they get bigger with bigger gain. The range of stable K is $0 < K < 5$

For $\delta_T = 0.05$, for $K = 20$, we have a pole of magnitude 1.0 and they get bigger with bigger gain. The range of stable K is $0 < K < 20$

In general, when $4K\delta_T > 1$ we have complex poles. For monotonic convergence we need positive real poles, so we want:

$$0 < K \leq 1/(4\delta_T)$$

Note that when $K = 1/(4\delta_T)$, we have the lowest magnitude pole, the pole approaches 1 as K decreases towards 0, so:

For $\delta_T = 0.2$, the best value of K is 1.25, which leads to a pole of $1/2$. For $\delta_T = 0.05$, the best value of K is 5.0, which also leads to a pole of $1/2$.

Question 4 (5 points): The analysis above shows that when δ_T increases the range of stable gains decreases. As the δ_T increases we need smaller and smaller gains to keep monotonic convergence. The result is very sluggish performance. In general, less frequent observations of the actual state of the robot (bigger δ_T) hurts performance and can lead to instability.
Question 5 (3 points): The original implementation of TBTurn used a constant velocity of motion and a constant threshold to detect termination. We had to pick the threshold so that we would not miss the termination, that is, the threshold had to be bigger than $\Omega_\delta T$. So, the bigger the velocity, the bigger the final orientation error we had to put up with. And, this error accumulated as we made more moves.

Question 6 (5 points): This is like the square we did in lab.
```python
def setup():
    robot.behavior = SequentialTSM([TBDriveSmoothly(1),
                                     TBTurnSmoothly(2*math.pi/3),
                                     TBDriveSmoothly(1),
                                     TBTurnSmoothly(2*math.pi/3),
                                     TBDriveSmoothly(1)])
    robot.behavior.reset()

def step():
    (fvel, rvel) = robot.behavior.step(collectSensors())
    motorOutput(fvel, rvel)
```

Note that we need turn the **exterior** angle of the triangle. But, we didn’t take points off for that.

Question 7 (7 points): Here are the equations for this system:

\[
\begin{align*}
\Theta[n] &= \Theta[n-1] + \delta_T \Omega[n-1] \\
\Omega[n] &= \Omega[n-1] + \delta_T \Xi[n-1] \\
\Xi[n] &= K_1 E[n] + K_2 E[n-1] \\
E[n] &= \Theta_{des}[n] - \Theta[n]
\end{align*}
\]

where Ξ is the acceleration. So, basically, the velocity is the integrated acceleration and the position is the integrated velocity. And, the acceleration is given by the gains times the position errors.
```python
def robot(k1, k2):
    dt = 0.2
    control = systemFunctionFromDifferenceEquation([1], [k1, k2])
    vel = systemFunctionFromDifferenceEquation([1, -1], [0, dt])
    pos = systemFunctionFromDifferenceEquation([1, -1], [0, dt])
    rob = control.cascade(vel).cascade(pos).feedback()
    return max(map(abs, rob.poles()))
```

Depending on the resolution of the search, one gets very different answers.

\begin{align*}
\text{minOverGrid}(\text{robot}, -10, 10, -10, 10, 1, 1) &\approx (0.9999999999999996, (1, -1)) \\
\text{minOverGrid}(\text{robot}, -10, 10, -10, 10, 0.5, 0.5) &\approx (0.8461798864100905, (2.5, -2.0)) \\
\text{minOverGrid}(\text{robot}, -10, 10, -10, 10, 0.25, 0.25) &\approx (0.7499999999999933, (1.75, -1.5)) \\
\text{minOverGrid}(\text{robot}, -10, 10, -10, 10, 0.1, 0.1) &\approx (0.688634457665866, (1.499999999999816, -1.30000000000018))
\end{align*}
Question 8 (10 points): There are many ways of writing this. Here are a few.

```python
def argmax(elements, f):
    bestScore = None
    bestElement = None
    for e in elements:
        score = f(e)
        if bestScore == None or score > bestScore:
            bestScore = score
            bestElement = e
    return bestElement
```

```python
def argmax(elements, f):
    bestElement = elements[0]
    for e in elements:
        if f(e) > f(bestElement):
            bestElement = e
    return bestElement
```

```python
def argmax(elements, f):
    vals = [f(e) for e in elements]
    return elements[vals.index(max(vals))]
```

```python
def argmax(elements, f):
    return max(elements, key=f)
```

Question 9 (5 points): Here are a couple of solutions that work:

WOPQ([Fish.length, Fish.width], [0.9, 0.1])
WOPQ([lambda x: x.length(), lambda x: x.width()], [0.9, 0.1])

Question 10 (10 points): We need to define the priority for an element, then we select the maximum (using argmax), remove and return it.

```python
def extract(self):
    def priority(e):
        return sum([w*f(e) for (w,f) in zip(self.weights, self.features)])
    best = argmax(self.elements, priority)
    self.elements.remove(best)
    return best
```

Question 11 (5 points): Sydney is the longest fish and the priority weights heavily favor length.

wopq.extract() = Sydney

Question 12 (10 points): We need to define the priority function and then just use FPQ.

```python
class WOPQ(FPQ):
    def __init__(self, features, weights):
        def priority(e):
            return sum([w*f(e) for (w,f) in zip(weights, features)])
        FPQ.__init__(self, priority)
```

That’s it... the other methods are provided by the FPQ class.
Question 13 (10 points): This is relatively easy using the key in the sorted function.

```python
def featureRange(feature, elements):
    vals = [feature(e) for e in elements]
    return max(vals) - min(vals)

def selectFeatures(features, n, elements):
    return sorted(features, key = featureRange)[-n : ]
```