
6.01, Spring Semester, 2008—Midterm Solutions 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.01—Introduction to EECS I
Spring Semester, 2008

Midterm Solutions

class TBTurnSmoothly:
def __init__(self , theta , k = 1.25):

remember the turning angle

self.turn = theta
the gain for the controller

self.k = k

def reset(self):
(sonars , pose) = collectSensors ()
initialize the initial and the current angle

self.target = pose [2] + self.turn

def step(self , sensors):
(sonars , pose) = sensors
update the error

self.error = self.target - pose [2]
return self.currentOutput ()

def currentOutput(self):
if not self.done ():

specify the forward and rotational velocity

return (0.0, self.k*self.error)
else:

stop

return (0, 0)

def done(self):
test we have rotated the desired angle

return abs(self.error) < .01

The only real change is in the currentOutput method, which before used to use a constant turning
rate.

Question 2 (10 points): The basic equations are:

Θ[n] = Θ[n− 1] + δTΩ[n− 1]

Ω[n] = K(Θdes[n− 1] −Θ[n− 1])

The operator version is:
(1− R)Θ = δtRΩ

Ω = KR(Θdes −Θ)

6.01, Spring Semester, 2008—Midterm Solutions 2

Combining we get:

Θ[n] −Θ[n− 1] + KδTΘ[n− 2] = KδTΘdes[n− 2]

Equivalently:

1− RΘ+ KδTR
2Θ = KδTR

2Θdes

We accepted a number of variations.

Question 3 (10 points): The system function is:

Θ

Θdes
=

KδTR
2Θdes

1− RΘ+ KδTR2Θ

Substitute R = 1/z in the denominator polynomial and we get:

z2 − z+ KδT

The roots of this polynomial are the poles:

1±
√
1− 4KδT

2

Note that for K = 0, one of the poles is 1.0. For K < 0, one of the poles is always greater than 1.0.
This makes sense since for K < 0, the feedback increases the error.

For δT = 0.2, for K = 5, we have a pole of magnitude 1.0 and they get bigger with bigger gain. The
range of stable K is 0 < K < 5

For δT = 0.05, for K = 20, we have a pole of magnitude 1.0 and they get bigger with bigger gain.
The range of stable K is 0 < K < 20

In general, when 4KδT > 1 we have complex poles. For monotonic convergence we need positive
real poles, so we want:

0 < K <= 1/(4δT)

Note that when K = 1/(4δT), we have the lowest magnitude pole, the pole approaches 1 as K
decreases towards 0, so:

For δT = 0.2, the best value of K is 1.25, which leads to a pole of 1/2. For δT = 0.05, the best value
of K is 5.0, which also leads to a pole of 1/2.

Question 4 (5 points): The analysis above shows that when δT increases the range of stable gains
decreases. As the δT increases we need smaller and smaller gains to keep monotonic convergence.
The result is very sluggish performance. In general, less frequent observations of the actual state
of the robot (bigger δT) hurts performance and can lead to instability.

6.01, Spring Semester, 2008—Midterm Solutions 3

Question 5 (3 points): The original implementation of TBTurn used a constant velocity of
motion and a constant threshold to detect termination. We had to pick the threshold so that we
would not miss the termination, that is, the threshold had to be bigger thanΩδT . So, the bigger the
velocity, the bigger the final orientation error we had to put up with. And, this error accumulated
as we made more moves.

Question 6 (5 points): This is like the square we did in lab.

def setup ():
robot.behavior = SequentialTSM ([TBDriveSmoothly (1),

TBTurnSmoothly (2* math.pi/3),
TBDriveSmoothly (1),
TBTurnSmoothly (2* math.pi/3),
TBDriveSmoothly (1)])

robot.behavior.reset ()

def step ():
(fvel , rvel) = robot.behavior.step(collectSensors ())
motorOutput(fvel , rvel)

Note that we need turn the exterior angle of the triangle. But, we didn’t take points off for that.

Question 7 (7 points): Here are the equations for this system:

Θ[n] = Θ[n− 1] + δTΩ[n− 1]

Ω[n] = Ω[n− 1] + δTΞ[n− 1]

Ξ[n] = K1E[n] + K2E[n− 1]

E[n] = Θdes[n] −Θ[n]

where Ξ is the acceleration. So, basically, the velocity is the integrated acceleration and the position
is the integrated velocity. And, the acceleration is given by the gains times the position errors.

def robot(k1 , k2):
dt = 0.2
control = systemFunctionFromDifferenceEquation ([1] ,[k1 , k2])
vel = systemFunctionFromDifferenceEquation ([1,-1],[0,dt])
pos = systemFunctionFromDifferenceEquation ([1,-1],[0,dt])
rob = control.cascade(vel). cascade(pos). feedback ()
return max(map(abs , rob.poles ()))

Depending on the resolution of the search, one gets very different answers.

minOverGrid(robot , -10, 10, -10, 10, 1, 1)
(0.99999999999999956 , (1, -1))
minOverGrid(robot , -10, 10, -10, 10, 0.5, 0.5)
(0.84617988641100905 , (2.5, -2.0))
minOverGrid(robot , -10, 10, -10, 10, 0.25, 0.25)
(0.74999999999999933 , (1.75, -1.5))
minOverGrid(robot , -10, 10, -10, 10, 0.1, 0.1)
(0.68863445766586584 , (1.4999999999999816 , -1.3000000000000189))

6.01, Spring Semester, 2008—Midterm Solutions 4

Question 8 (10 points): There are many ways of writing this. Here are a few.
def argmax(elements , f):

bestScore = None
bestElement = None
for e in elements:

score = f(e)
if bestScore == None or score > bestScore:

bestScore = score
bestElement = e

return bestElement

def argmax(elements , f):
bestElement = elements [0]
for e in elements:

if f(e) > f(bestElement):
bestElement = e

return bestElement

def argmax(elements , f):
vals = [f(e) for e in elements]
return elements[vals.index(max(vals))]

def argmax(elements , f):
return max(elements , key=f])

Question 9 (5 points): Here are a couple of solutions that work:
WOPQ([Fish.length , Fish.width], [0.9, 0.1])
WOPQ([lambda x: x.length(), lambda x: x.width()], [0.9, 0.1])

Question 10 (10 points): We need to define the priority for an element, then we select the
maximum (using argmax), remove and return it.
def extract(self):

def priority(e):
return sum([w*f(e) for (w,f) in zip(self.weights ,self.features)])

best = argmax(self.elements , priority)
self.elements.remove(best)
return best

Question 11 (5 points): Sydney is the longest fish and the priority weights heavily favor length.
wopq.extract () = Sydney

Question 12 (10 points): We need to define the priority function and then just use FPQ.
class WOPQ(FPQ):

def __init__(self , features , weights):
def priority(e):

return sum([w*f(e) for (w,f) in zip(weights ,features)])
FPQ.__init__(self , priority)

That’s it... the other methods are provided by the FPQ class.

6.01, Spring Semester, 2008—Midterm Solutions 5

Question 13 (10 points): This is relatively easy using the key in the sorted function.

def featureRange(feature , elements):
vals = [feature(e) for e in elements]
return max(vals) - min(vals)

def selectFeatures(features , n, elements):
return sorted(features , key = featureRange)[-n :]

