6.01 Review of Linear Systems

A discrete-time signal is a function of integer times, such as z[n]. A discrete-time system

converts input signals to output signals according to a fixed rule. In 6.01, we focus almost exclusively
on the class of systems that are linear and time-invariant (LTI). This is highly restrictive, but it
happens that a great many systems in the real world can be approximated as being LTI.

We have three perspectives from which we can look at and manipulate LTI systems: difference

equations, transfer functions, and block diagrams. Each has its strengths and weaknesses, and a
large part of your effort will be spent either in deciding which viewpoint to take or in converting
between them. This is a general feature of signal processing and systems theory: placing a problem
in the correct basis oftentimes goes a long way towards solving it.

1

Difference Equations

. Any LTT system relating input z[n| to output y[n] can be described uniquely by means of a

difference equation:

apzx[n] + arzn — 1]+ ...+ ayx[n — N] = boy[n] + biyln — 1]+ ... + byy[n — N]| (1)

. Good for: numerically finding an output y[n] point-by-point given initial conditions and an

input waveform x[n]. We can always solve for the output at time n depending on its previous
values and the current and previous values of the input:

y[n] = (%) (apz[n] + a1z[n — 1]+ ...+ ayx[n — N] —biyln — 1] — ... = byy[n — N]) (2)

. Good for: Python implementation. We basically copied the above equation into Python each

time we implemented control loops (robot down the hallway, head, searching for light, etc).

. Combining Difference Equations: Difference equations can sometimes be easily combined

by means of algebra.
Example 1: Say relation 1 relates input x[n] and intermediate signal z[n] by

z[n] = z[n] — z[n — 1]

and relation 2 relates z[n], z[n], and output y[n] by
y[n] = z[n — 1] + x[n — 2]

Can we find a relation between y[n] and z[n]? If we delay equation by one time unit to obtain
zln =1 =zn —1] — z[n — 2]

This can be plugged into equation 2 to yield the desired relation:
yln] = z[n —1]

Example 2: Now suppose equation 1 was instead
z[n] — z[n — 1] = z[n] — z[n — 2]

and equation 2 was
yln] = zln — 2] + z[n]

One may still combine them by summing appropriately delayed versions of each equation, but
it is a painful procedure. Transfer functions are far better suited to this task.



6.01 Review of Linear Systems

2 Transfer Functions

As we use them in 6.01, transfer functions are a convenient means for us to keep track of the delays
and coeflicients of a difference equation. In reality, there is an incredibly deep and beautiful theory
behind them (and systems in general) — we advise interested parties to check out 6.003 (or the
OCW site if you can’t wait!).

A transfer function is a rational polynomial of a single “variable,” R, that specifies the difference
equation relating our input z[n] and output y[n]. Suppose an LTI system is described by the generic
difference equation we saw earlier:

apz[n] + arzn — 1]+ ... + ayz[n — N] = boy[n] + biyln — 1] + ... + byy[n — NJ.

We can construct a transfer function from this description.

1.

2.
3.

Replace all terms az[n — M] with aXRM. The variable R represents a delay, and X is the
transfer function variable for the input signal.

Do likewise for all terms by[n — M].

Solve for the ratio Y/X in terms of R. This ratio is the transfer function.

One may reverse these steps to obtain a difference equation from a transfer function.
Several important notes about transfer functions deserve mentioning:

1.
2.
3.

Good for: Analyzing behavior at a high level (stable? oscillatory?).
Good for: Combining systems.

Combining Transfer Functions: Composition One may compose transfer functions as if
they are “ratios” between signals. For instance, if H; = Z/X is the transfer function from X
to Z and Hy =Y/Z is from Z to Y, the two may be multiplied to yield the transfer function
from X toY: Hy-Hy, =Y/X.

Combining Transfer Functions: Addition Continuing the ratio approach, if H; = Z;/X
is the transfer function from X to Z1, Hy = Z3/X is from X to Z3, and Y = Z; + Zs, then
the transfer function from X to Y is given by Y/X = (Z; + Z3)/X = H; + Ho.

Remember: You can treat transfer functions as if they are fractions. If the numerator
possesses a factor also present in the denominator, they can be canceled out without changing
the system.

Remember: Transfer functions are rational polynomials in terms of R. If yours isn’t (e.g. if
X or Y is showing up in it), a red flag should go off that something is amiss.

Example Consider the problem we “gave up” on in the previous section (difference equations).
We are given the relationship between z[n| and z[n] as z[n] — z[n — 1] = z[n] — x[n — 2], and
we are also given a relationship between z[n] and y[n| as y[n] = z[n — 2] + z[n]. What is the
difference equation between y[n] and z[n]? We can go through this step-by-step.

e Converting equation 1 to transfer function form: Z(1 — R) = X (1 — R?)

e Converting equation 2 to transfer function form: Y = Z(1 + R?)

e Solve for Z in equation 1: Z = X (1 —R?)/(1 - R)

Plug into equation 2: Y/X = (1 — R?)(1+R?)/(1-R)

Simplifying: Y/X = (1 + R)(1 +R?)

Expanding: ¥ = X(R*+R?+ R + 1)

Convert to the difference equation picture: y[n] = z[n — 3] + z[n — 2] + z[n — 1] + z[n]



6.01 Review of Linear Systems

3 Block Diagrams

Block diagrams are graphical representations of LTI systems. In 6.01, we consider block diagrams
made from three basic pieces.

1. Gain. The multiplication of a signal z[n] with a constant gain K is produced at the output
of a gain block, Kz[n].

2. Delay. A signal is delayed by one time unit before being produced at the output.

3. Summation. The sum of two or more signals is produced at the output of summation block.

Every block is fully characterized by a transfer function relating its inputs to its output. We can
therefore replace a complicated block network with a single block, only keeping the transfer function
H =Y/X of the more complicated system.

1. Good for: Linking a physical description of a system to a mathematical one.

2. Good for: Circuit implementations. We see a direct correlation between two of the basic
blocks (summation and gain) and circuits (Summer/Subtractor, Amplifier).

3. Remember: The lines connecting the blocks each correspond to a signal, much as a voltage
corresponds to a node of a circuit. When a wire “splits” into multiple threads, they all still
contain the same signal

4. Remember: Block diagrams are not unique. A system can be described with any of an
infinite number of block diagrams. Just because two diagrams aren’t exactly the same does
not mean that they have different input/output relationships.

4 Going Between the Three

Conversion between difference equations and transfer functions is a relatively mechanistic process. It
is less clear how to obtain a block diagram from a difference equation/transfer function, or vice-versa,
so we focus on that.

4.1 Difference Equation to Block Diagram

This is in many ways a design problem: how to implement difference equations in terms of discrete
gain/sum/delay blocks? There are many possible answers.

Example: If the system is specified in terms of a single difference equation, of the form
apz[n] + arxzin — 1]+ ... + ayzn — N] = boy[n] + bryn — 1] + ... + bpry[n — M)

then certain “canonical” forms allow us to generate a block diagram almost automatically. For
instance, we may rearrange the difference equation to solve for y[n]:

yln] = (%) (apz[n] + arxz[n — 1]+ ...+ ayz[n — N] = biy[n — 1] — ... — bpyry[n — M])



6.01 Review of Linear Systems

Can you implement the above with a block diagram? Think of it as a two-step process: assume,
first that you have access to the signals z[n], z[n —1],... and y[n — 1],y[n — 2],. . .; can you use these
signals to generate y[n]? Then, think about how you might generate these signals.

The above technique can always be used to convert a single difference equation into a block
diagram. This is not by itself the most convenient form, however, when multiple equations and
intermediate signals are involved. One approach is to reduce the multiple equations into a single
equation by means of transfer functions, and then implement this single equation in the manner
we just did. The other approach is to be creative: with practice you will “see” ways to rapidly
implement difference relationships.

4.2 Block Diagram to Transfer Function

Obtaining a difference equation from a block diagram is analogous to analytically solving a circuit.
The brute force approach is to label every node in the diagram, write the transfer relationship for
every block, and combine the resulting set of equations into a single transfer function from input to
output. You might find yourself skipping steps after a little practice with this; oftentimes you’ll be
able to go straight from the block diagram to a transfer function.

Example: Consider the standard feedback block diagram: Y is passed through a transfer func-
tion Hs, the resulting signal is subtracted from X to give an error signal, and this error signal is
sent through a different transfer function H; to determine Y.

Passing Y through Hs creates the signal

V = HyY

This is then subtracted from X to give us an error signal, F.
E=X-V

The next block, Hy, turns F into Y, giving us the equation
Y =HF

From this point, we can combine these equations algebraically. (1) and (2) fuse together to give the
relationship between F, X, and Y: F = X — H»oY. Inserting this into the second equation gives us
a transfer relationship between X and Y:

Y =HX - HHY
Solving for Y, we have the global transfer relationship between X and Y — otherwise known as
Black’s Formula.

H,
Y=——-X
1+ HHy



