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MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.081—Introduction to EECS I
Spring Semester, 2007

Work for Lucky Week 13

• Software lab for Tuesday, May 8
• No pre-lab or tutor problems this week
• Robot lab for Thursday, May 10
• No Post-lab problems

Robot localization

In Simulation

Download the file ps13-code.zip. It should have the following files:

• AvoidWanderTB.py
• GridMap.py
• GridStateEstimator.py
• KBest.py
• Map.py
• search.py
• Sequence.py
• utilities.py
• WanderEstBrain.py
• WriteIdealReadings.py
• XYDriver.py
• XYEstBrain.py
• XYGridPlanner.py

Edit WanderEstBrain.py so that the variable dataDirectory is defined to be whatever
path you unpacked the code file into.

Now, start up SoaR in simulation, using the She world, and use WanderEstBrain.py as the brain.
When it starts up, you’ll see two new windows.

The first window, labeled Belief, shows the outline of the obstacles in the world, and a grid of
colored squares. Squares that are colored black represent locations that cannot be occupied by the
robot. For the purposes of this window, for each (x, y) location, we find the θ∗ value that is most
likely, and then draw a color that’s related to the probability that the robot is at pose (x, y, θ∗).
The colors go in order from more to less likely: yellow, red, blue, gray. At the absolutely most
likely pose, the robot is drawn, with a nose, in green.

The second window, labeled P(O|S), shows, each time a sonar observation o is received,

max
θ

Pr(o|x, y, θ) ,

for each square x, y. That is, it draws a color, as above, that shows how likely the current observation
was in each square, using the most likely possible orientation. Note, though, that the values drawn
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in this window aren’t normalized (they don’t sum to 1); we’ve scaled the colors to make them sort
of similar to the colors in the belief window, but they aren’t directly comparable.

The brain WanderEstBrain.py just uses our standard avoid and wander program (from week 2!),
but keeps the robot’s belief state about its pose updated as it does so.

Run the simulation. Watch the colored boxes, and be sure they make sense to you. Try “kidnap-
ping” the robot (dragging the simulated robot in the window) and see how well the belief state
tracks the change. We recommend clicking the SoaR stop button, then dragging the robot, then
clicking the run button. It makes it less likely that the robot will get stuck in some random place
along the way.

Question 1. Explain the relationship between the two windows, and why they often start out
similar and diverge over time.

Question 2. Why is it that, when you put the robot in a corner, all of the corners have high
values in the P(o|s) window?

Question 3. What happens when the robot is kidnapped?

Checkpoint: Tuesday 4:00 PM

• Find a staff member, and explain your answers to the previous set of questions.

The Code

Here is much of the code from WanderEstBrain.py, with an explanation of what’s going on. It is
similar, in high-level structure, to the planner brains we used before.

We start by telling this program where to look for its data files. You can do that by editing the
dataDirectory line. The file maxRange2.465/she20.dat contains the ideal sensor readings at
every x, y, θ pose on a 20× 20× 20 grid, assuming that the walls of the She World in the simulator
are fixed. It takes a long time to compute them, so it’s better to do it off-line, and then just look
them up when we’re running the state update routine.

dataDirectory = "yourPathNameHere/ps13code/maxRange2 .465/"

Next, we make an instance of the GridStateEstimator class, first specifying the size of the world,
and then calling the initializer.

def setup ():
(xmin , xmax , ymin , ymax) = (0.0, 4.0, 0.0, 4.0)
m = GridStateEstimator(Map(sheBoxes), xmin , xmax , ymin , ymax , 20,\

dataDirectory + "she20.dat",
numBestPoses = 5)

Now, we make two windows, one for displaying the belief state and one for displaying the perception
probabilities. To display a belief state, we start by finding, for each grid value of x and y, the value
of θ so that P(x, y, θ) is maximized. What does this mean? It’s the orientation that would be most
likely for the robot, if it were in that location. Now, we take all those values and draw the squares
with the highest values in yellow, next highest in red, next highest in blue, and least high in gray.
We also show the most likely pose (both the location and orientation) in green.
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(xrange , yrange) = (xmax -xmin , ymax -ymin)
(wxmin , wxmax , wymin , wymax) = (xmin - 0.05* xrange , xmax + 0.05* xrange ,

ymin - 0.05* yrange , ymax +
0.05* yrange)

beliefWindow = DrawingWindow (300, 300, wxmin , wxmax , wymin , wymax , \
"Belief")

percWindow = DrawingWindow (300, 300, wxmin , wxmax , wymin , wymax ,"P(O | S)")
m.drawBelief(beliefWindow)
m.initPose(pose ())

In all the previous labs, when we issued a motor command to the robot, it would continue moving
with those velocities until it got the next command. In this lab, we’re going to do it differently,
because doing belief state update can sometimes take a long time to compute, and if we go for a
long time without giving the robot a new command, it could run into the wall before we have a
chance to give it a stop command. So, this time we are going to run the robot in discrete motor
mode, where it moves for a tenth of a second at the commanded velocities and then stops until it
gets another command.

def discreteMotor(trans , rot):
discreteMotorOutput(trans , rot , 0.1)

Because the belief update is so expensive, we don’t want to do it on every primitive step. But we’re
going to need to make a function that can be executed on every primitive step. So, here, we define
a function makeBeliefUpdateEveryN that takes n as an argument, allocates a counter that will
keep track of how long it has been since the last update. Then, we return a function that refers to
that counter: it checks to see whether it has been n steps since the last update. If so, it resets the
counter and updates the belief state based on the current sonar readings and the current pose and
redraws the windows.

Why are we handing the current pose into the belief state update, when the robot doesn’t really
know where it is in the world? The answer is that the belief state update needs to know the
action we just took, since we need to use the combination of a previous belief state, action and
observation to update the probability of a state. We can interpret the action as ’whatever change
in pose happened over the past N steps’. So, that is what we use the pose for: to compute the
change in pose over the last N steps.

def makeBeliefUpdateEveryN(n):
updateCount = [n]
def beliefUpdateEveryN ():

if updateCount [0] == n:
updateCount [0] = 0
m.update(sonarDistances (), pose ())
m.drawObsP(percWindow)
m.drawBelief(beliefWindow)

updateCount [0] += 1
return beliefUpdateEveryN

Finally, we make the driver. It is an instance of a new class, TBParallelWithFun, defined in
our new Sequence.py, which takes a terminating behavior and a function at initialization time,
and makes a new terminating behavior that does whatever the original TB did, but also calls the
specified function on every step.

In this case, we do our old favorite avoid and wander behavior, in parallel with a function that
updates the belief state every 10 steps.
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robot.driver = TBParallelWithFun(AvoidWanderTB(sonarDistances ,
discreteMotor),

makeBeliefUpdateEveryN (10))
robot.driver.start()

Whew. That was all the initialization. Now, every time we’re asked to do a step, we ask the driver
to take a step.

def step ():
robot.driver.step()

Quality of Localization

We might want to know how well our localization method is working, in order to evaluate how
changes in various aspects of our model affect localization performance. So, first, we have to decide
what would be a good measure of how well the localization is working, and then implement a
method that computes it. Luckily, in the simulator at least, we can find out the true pose; but we
still have to think of a way to measure the quality of the current belief state, given the true pose.

In the simulator, you can “cheat” and find the true pose of the robot. Inside a brain, you can call
cheatPose() to get the current true pose.

You can find the logarithm of the probability associated with a real-valued pose by doing

m.getBeliefAtPose(cheatPose ())

Or, if you want to get the log probability associated with a set of grid indices, you can do

m.getBeliefAtIndices ((2, 2, 20))

To convert these numbers to probability, use math.exp. If you want to use it, you’ll have to put
import math at the top of your file. You can also convert a set of grid indices into a pose using
m.indicesToPose, or a pose into a set of grid indices using m.poseToIndices.

The robot’s opinion of the grid square with the highest probability (i.e., the tuple (ix, iy, ith)
with the highest probability of containing the robot) can be found with:

m.bestPoseIndices

Another method that you might find useful is

m.kBestPoses

It returns a tuple of the k most likely poses, in the format ((lp1, (x1, y1, th1)), (lp2, (x2,
y2, th2)), ...), where lp1 is the log of the probability of the robot being in the pose with indices
(x1, y1, th1). By default, it keeps the 5 best poses, but you can change this value by changing
the argument in the initializer for GridStateEstimator.

As of Tuesday, our version of SoaR doesn’t do logging correctly; so skip this for now In order
to do repeatable experiments, it will be useful to gather data logs from simulated or real robot
runs. To gather a log of the sensor data that the robot gathers as it’s moving around, add
writeLog("robot.log") to your brain. This will keep track of all the sensor and odometry read-
ings that your robot got. Now, you can run your program again, but replace that line with
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readLog("robot.log"); the robot won’t move, and instead it will “hallucinate” the sensor read-
ings that it had on the previous run whenever you call sonarDistances() or pose(). This allows
you to sit quietly at your desk and print out values, or stare at the graphics windows to really
understand what was going on, rather than trying to figure it out as you chase your robot around
the lab. When you are replaying a log, you’ll have to choose a simulated world, and the robot will
run around, insensate, banging into things. Just don’t watch.

Question 4. Think of a good way to measure how well the localization is working, and augment
WanderEstBrain.py to compute that measure and print it out. Talk over your planned
measure with your LA.

Question 5. Implement your measure and arrange it so that your brain prints it out every time
the belief state is updated. You might want to print average value of your measure over
time, as well. In order to compare localization performance carefully, we should try different
methods on the same data. To do this, let the simulated robot drive around, while you are
grabbing a log. Kidnap the robot a time or two when you do this (but try to remember
where the simulated robot really was, and something about the kidnappings, or you’ll have
trouble making sense of subsequent runs.)

Question 6. Try changing the frequency with which the belief state is updated. How does that
change the quality of the localization, as measured on the log file you grabbed above?

Question 7. Try using grids of different sizes. You can do this by changing she20.dat in
WanderEstBrain.py to she30.dat. You’ll also have to change the 20 in the call to
GridStateEstimator to 30, as appropriate. How does that affect the localization per-
formance? Is your localization metric comparable when the grid size changes? If not, how
could you change it so it would be?

Question 8. We’ve prepared two other environments for you. Try using shannon20.dat instead
of she20.dat. You can do that by commenting out the two lines for she world, and un-
commenting ones for shannon. You’ll have to choose shannon.py in SoaR when you specify
what simulator to use. Try using playpen20.dat in your program and empty.py in the
simulator. Which of these worlds is easier for the robot to localize in? Why? Could you fix
it with better sensors?

Checkpoint: Tuesday 5:00 PM

• Implementation of a metric.

Checkpoint: Thursday 3:00 PM

• Changing update frequency

• Changing granularity

• Other environments
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On the robot

Remember to remove all calls to cheatPose when you’re running on the real robot. It doesn’t know
how to cheat!

Using a robot and the available playpens (we’ll have one corresponding to Shannon’s World, which
can be converted to Empty world by removing the box in the middle), gather some logs of sensor
data as the robot moves around in the playpen. Take notes while the robot is moving, and draw
a rough picture of the trajectory it followed. Now, replay the logs and watch the state estimation
windows. Have the code print out the most likely state at each state estimation step. Do they
correspond to the actual positions of the robot, according to your notes?

If you find the computational overhead of doing the state estimation is too annoying while gathering
your robot logs, you could actually comment out the state-estimation code while running on the
real robot; since this is a passive part of the program and doesn’t affect the robot’s actions, you’ll
get the same data if you just run the basic avoid and wander behavior. Of course, this is only true
because we have set a switch in SoaR that makes the robot move a fixed amount of time and then
stop on each step, rather than moving continuously until the next move command is received.

Sensor noise We picked the standard deviation used in the sensor model pretty arbitrarily to
be 0.3. Inside the file GridStateEstimator.py you will find a statement

sigma = 0.3

How should we set this value? There are actually two sources of variability that are being accounted
for, here. The first is the usual one of how much variability there is in a sonar reading given an
actual distance to the wall. In the simulator, there is currently no noise on the sensor readings, so
we aren’t getting much variability from that source; but of course there is more of this kind of noise
on the real robot sensors. The other one is due to the discretization: we are treating all the poses
in one cube of the pose space as if they were the same, and there may be significant variability of
the sensor readings from the different poses in that cube.

The right strategy for setting the value would be to sample a bunch of sensor readings, and then do
some statistical analysis to estimate the mean and variance. Instead of doing that, you might try
changing the variance in the model and seeing what effect that has on the quality of the estimates
you get (in simulation, of course).

Question 9. Does changing the sensor noise model make the estimation work better? How did
you change it?

Question 10. Is sigma = 0.3 reasonable for the grid quares we’re using? What would we need
to do to our model if there were no bubble wrap?

Checkpoint: Thursday 4:00 PM

• Tests on the robot, with different sensor noise model.
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Using the planner

Switch to using XYEstBrain.py. Instead of running the avoid and wander behavior, it runs the
planning system from lab 11. But how does it know its current pose? Of course, it doesn’t really;
but it takes the most likely pose out of the state estimator, assumes it’s the correct pose, makes a
plan, executes the first step, and then re-estimates the pose using our state estimator.

Question 11. Run it (in simulation) three or four times in She world. What happens?

Question 12. Try it on the robot. Does it seem to behave differently there?

Question 13. If there are cases when the robot does not reach the desired goal (either in simu-
lation or on the real robot), describe one, explain why you think it happened, and describe
a strategy for fixing it (but you don’t have to actually do it, unless you have spare time).

Checkpoint: Thursday 4:45 PM

• Answers to questions above.

No Written Post-Lab Due

Concepts covered in this assignment

Here are the important points covered in this assignment:

• Robot localization can be done robustly, even with noisy sensors and effectors

• A variety of modeling tricks, including discretization and independence assumptions, are
necessary to make the system practical

• Making formal models of real problems is difficult and important

• Programming practice


