The three faces of 6.081

- Coping with complexity in software design \qquad
- Modeling and interacting with physical systems (control)
- Dealing with error and uncertainty
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Organizing view: linear systems		
	sequences	systems
primitives	individual sequences	Individual systems
Means of combination	addition scaling shift	cascade parallel sum
Means of abstraction	Z-transform	difference equations system function poles and zeros
Means of capturing common patterns		feedback and Black's formula

\qquad

$$
\begin{aligned}
& R \sum_{i}^{\psi_{i}^{v} \dot{v}}{ }_{v}^{v} \vdots \\
& v=i R
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

Series combination Parallel combination
$R_{3}=R_{1}+R_{2}$
$\frac{1}{R_{3}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Organizing view: circuits	
pinitives	Sitor, surues,
Meanso or combinaion	??
Meanso orastaction	

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
"Modeling and Monitoring of Cardiovascular Dynamics in the
Intensive Care Unit"
Tushar Parlikar, Thomas Heldt, George Verghese, 2005

- For the SPCVM, applying the cycle-averaging technique, we obtain a circuit with dependent voltage and current sources:

$\left\langle V_{i}(t)\right\rangle_{0}=\left\langle q_{1}(t) V_{n}(t)\right\rangle_{0}+\left\langle\left(1-s_{1}(t)\right) V_{1}(t)\right\rangle_{0} \approx\left\langle s_{1}(t)\right\rangle_{0}\left(V_{0}(t)\right\rangle_{0}+\left(1-\left\langle s_{1}(t)\right\rangle_{0}\right)\left\langle V_{v}(t)\right\rangle_{0}+K_{t}$
$\left.\left\langle V_{0}(t)\right\rangle_{0} \approx\left\langle s_{D}(t)\right\rangle_{0}\left\langle V_{b}(t)\right\rangle_{0}+\left(1-\left\langle s_{D}(t)\right\rangle_{0}\right) V_{G}(t)\right\rangle_{0}+K_{0}$

Any two-terminal network made up of resistors and voltage sources, when viewed from the terminals, is completely electrically equivalent to a network composed of a single resistor and a single voltage source.

$$
v=V_{T H}+i R_{T H}
$$

\qquad

\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Organizing view: circuits	
primitives	
Measistors, sources, ...	
 Means of abstraction 1-port Thévenin equivalent wodes Means of capturing common patterns	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Operational amplifier (op-amp)
5-terminal device

v	$\begin{gathered} v_{\text {out }}(1+K)=K V_{S} \\ \frac{v_{\text {out }}}{V_{S}}=\frac{K}{1+K} \\ \frac{v_{\text {out }}}{V_{S}} \approx 1 \end{gathered}$

\qquad

Voltage follower (or buffer)

\qquad

\qquad
\qquad

$$
\frac{v_{t}^{*}}{v_{t i v}^{*}} \frac{R_{t}+R_{1}}{R_{1}}
$$

$$
\frac{Y}{x}=\frac{k}{1+\beta k}
$$

$$
\beta=\frac{R_{1}}{R_{1}+R_{F}} \approx \frac{1}{\beta} \quad K \gg 0
$$

\qquad
\qquad
\qquad

$$
\begin{array}{ll}
y=K e & Y=K X-\beta K Y \\
e=X-\beta Y & Y[1+\beta K]=K X
\end{array}
$$

$$
Y=K[X-\beta Y] \quad \frac{Y}{X}=\frac{K}{1+\beta K} \approx \frac{1}{\beta}
$$

Black's formula for negative feedback
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

