
6.081, Spring Semester, 2007—Lecture 5 Notes 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.081—Introduction to EECS I
Spring Semester, 2007

Lecture 5 Notes

Difference Equations

Note: There are some questions interspersed with these notes. You don’t have to do or turn them
in; we just thought they might help you think about the material more deeply.

Last week, we played around with Fibonacci numbers, and saw that they can be seen as being
defined by the difference equation

y[n] = y[n− 1] + y[n− 2] ,

with initial conditions y[0] = 0 and y[1] = 1. This week and next, we’re going to explore difference
equations in some depth, looking at how to use them to model real-world situations and learning
how to understand the systems they describe with greater depth and insight.

Let’s begin at the beginning. A difference equation, together with some initial conditions, defines
an infinite sequence of values, y[0], We’ll say a difference equation is kth order, when the
definition of y[n] depends only on the k previous values in the sequence; that is, that

y[n] = g(y[n− 1], . . . , y[n− k]) ,

for some function g. This class of equations is very big (g could involve products of the previous
values, or exponentials or trig functions), and difficult to analyze.

If we restrict our attention to linear difference equations, which have the form

y[n] = α1y[n− 1] + . . .+ αky[n− k]) ,

for real constant values α1, . . . , αk, then we limit the class considerably, and also make them
relatively easy to analyze. You probably already have seen, and will continue to see, that linear
functions are fundamentally simpler and easier to work with than most others. Because of this, we
would often prefer to make a linear model of a real-world situation, even if it doesn’t fit perfectly,
than to make a non-linear one that we cannot analyze.

First-Order Linear Difference Equations

The simplest linear difference equations are first order; they have the form

y[n] = α1y[n− 1] ,

and require stipulation of y[0] (which we’ll also call v0, for short).

As we saw last week, there are lots of ways to calculate the values of a difference equation, so if
we wanted to know y[n], we could compute it relatively easily, in Θ(n) time. Now we’ll see how to

6.081, Spring Semester, 2007—Lecture 5 Notes 2

derive a closed form definition of y[n] that can be computed more directly. In the first-order case,
we can do it pretty much by inspection. Let’s start expanding the definition:

y[n] = α1y[n− 1]

= α1(α1y[n− 2])

= α1(α1(α1y[n− 3]))

= α1(α1(α1 . . . y[0]))

= v0α
n
1

Question 1. If your computer didn’t have exponentiation defined as a primitive, what would be
the running time of the fastest algorithm you know for computing y[n], in Θ notation?

If all we got out of this maneuver was a somewhat faster algorithm, we’d be happy; but in fact, we’ll
also get a considerably deeper understanding of the sequence that’s being defined by the difference
equation.

Example 1 Your great aunt Zelda put $100 into an interest-bearing bank account 30 years ago
and forgot about it. The account made 5% interest, compounded annually. She just died, and you
inherited the account. How much did you get?

We can model the balance in Aunt Zelda’s bank account as a FOLDE (first-order linear difference
equation), where n indexes the number of years since Zelda opened the account:

y[n] = y[n− 1] + 0.05y[n− 1] = 1.05y[n− 1] ,

with v0 = 100. So, from the analysis above, we know that y[30] = 100 · 1.0530 ≈ 432. So, you
inherited about $432. Not too bad. Sadly, Zelda died tragically young. How much would you have
gotten if Zelda had lived another 30 years? y[60] = 100 ·1.0560 ≈ 1868. We can see the exponential
growth here, even though the exponent is pretty small.

Example 2 My great uncle Oswald put $100 into a management-fee-bearing bank account 30 years
ago and forgot about it. The account paid a 5% fee, deducted annually. He just died, and I inherited
the account. How much did I get?

Uncle Oswald’s bank account is also modelable as a FOLDE in the same way, but with an exponent
of 0.95:

y[n] = y[n− 1] − 0.05y[n− 1] = 0.95y[n− 1] .

So, we know that the amount I stand to inherit is y[30] = 100 · 0.9530 ≈ 21. Sigh.

We can see that the value of α1 governs the qualitative behavior of these systems:

• If α1 > 1, the values increase without bound, and we say that the system diverges.
• If 0 < α1 < 1, the values decrease to 0, and we say that that the system converges monotonically.
• If α1 = 1, then the system just maintains its initial value.

6.081, Spring Semester, 2007—Lecture 5 Notes 3

What if α is negative? It’s a little bit harder to come up with natural first-order systems that
behave this way, but it is still useful to study the math. Let’s consider two systems:

y[n] =
1

2
y[n− 1]

g[n] = −
1

2
g[n− 1]

When the root, α1, is negative, as it is in g[n], then the value oscillates between negative and
positive values.

• If α1 < −1, the absolute values increase without bound, and we say that the system diverges
and oscillates.
• If −1 < α1 < 0, the values decrease to 0, and we say that that the system converges and

oscillates.
• If α1 = −1, then the system maintains its initial absolute value, but oscillates between v0 and

−v0.

Example 3 Consider a robot that is driving toward a wall, and should stop when it is at a distance
0 from the wall. If it is programmed so that, on step n of its program, it moves at a velocity
proportional to d[n − 1], the distance to the wall at the previous step, then we can model the
behavior of the system as

d[n] = d[n− 1] + δtv[n− 1]

= d[n− 1] + δtγd[n− 1]

= (1+ δtγ)d[n− 1] ,

where δt is the amount of time that passes between steps. The constant of proportionality, γ, is
under our control. How should we choose it to ensure that the system is stable?

In order for it to converge, we need to be sure that the coefficient α1 = 1+ δtγ has magnitude less
than 1. Furthermore, since we want it to converge monotonically (oscillating would mean that it
would bang into the wall), we need α1 to be positive. So, that means we need to choose

0 < 1+ δtγ < 1

−1 < δtγ < 0

−
1

δt
< γ < 0

Question 2. What happens if we set γ very near but < 0?

Question 3. What happens if we set γ very near but > −1/δt?

Second-Order Linear Difference Equations

Now, let’s consider second order equations, in which the value at time step n depends on two
previous values: they have the form

y[n] = α1y[n− 1] + α2y[n− 2] ,

6.081, Spring Semester, 2007—Lecture 5 Notes 4

and we’ll find that in order to completely specify their behavior, we’ll need to specify two initial
conditions, typically y[0] and y[1] (called v0 and v1, for short).

It’s hard to see what the form of the closed-form solution might be, just by inspecting the difference
equation. We can start expanding the equation, but we’ll get a whole tree, as we saw in the last
lecture. Even looking at a single branch of the tree, though, it feels like we might get some sort of
an exponential form out. And we’ve already seen that the Fibonacci numbers, which are specified
by such a difference equation, seem to have an exponential form.

So, we’re going to just take a guess about the form of the answer. We’re going to guess that:

y[n] = cλn ,

for some real value c, and some possibly complex value λ.1 Have patience, and let’s see what the
consequences of this guess are.

If we plug that form into the original difference equation, we get:

cλn = α1cλ
n−1 + α2cλ

n−2 .

We can simplify this by dividing through by cλn−2, to get the quadratic equation

λ2 = α1λ+ α2 .

That seems pretty simple.

Now, we can solve that quadratic equation, which is called the characteristic equation, finding that
there are generally two roots,

(λ1, λ2) =
α1 ±

√
α21 + 4α2

2
.

Question 4. Convince yourself we haven’t made a sign error above.

So, what does this mean? Well, by construction, it means that for any constant c, the sequence
specified by y[n] = cλn1 will satisfy the difference equation at every value of n. And, so, too, will
y[n] = cλn2 . We seem to have gotten more than we bargained for: we have two whole families of
sequences that satisfy the equation we were given. Furthermore, if y[n] = cλn1 and y[n] = cλn2 both
satisfy the equation, then so does y[n] = c1λ

n
1 + c2λ

n
2 .

That any linear combination of solutions is also a solution is a very important important fact, called
the principle of superposition. It follows from the linearity of the difference equation.2 We can test
it by plugging it into the original equation:

y[n] = α1y[n− 1] + α2y[n− 1]

c1λ
n
1 + c2λ

n
2 = α1(c1λ

n−1
1 + c2λ

n−1
2) + α2(c1λ

n−2
1 + c2λ

n−2
2) .

But we know that the term involving λ1 on the left side is equal to the sum of the two λ1 terms on
the right side, and the same for the λ2 terms; so this equation is satisfied.

1“Complex!” we hear you say. “That seems like a crazy guess.” Yes; we’ll see how it happens in just a bit.
2It is important to note that this property only holds for the solution families we get before we incorporate the

initial conditions.

6.081, Spring Semester, 2007—Lecture 5 Notes 5

Just to get an idea how this goes, let’s try it on the difference equation for the Fibonacci numbers:

y[n] = y[n− 1] + y[n− 2] .

In this case α1 = α2 = 1. So, when we solve for the roots, we get

(λ1, λ2) =
1±
√
5

2
,

and so we know that any series of the form

y[n] = c1

(
1+
√
5

2

)n
+ c2

(
1−
√
5

2

)n
,

will satisfy the difference equation.

In order to get the Fibonacci numbers, we need to find the particular values of c1 and c2 that cause
y[0] = 0 and y[1] = 1. We start by seeing what constraint we can get from the first initial value:

y[0] = 0

c1

(
1+
√
5

2

)0
+ c2

(
1−
√
5

2

)0
= 0

c1 + c2 = 0

c1 = −c2 .

Now, for the second constraint:

y[1] = 1

c1

(
1+
√
5

2

)1
+ c2

(
1−
√
5

2

)1
= 1

c1
1+
√
5

2
− c1

1−
√
5

2
= 1

c1((1+
√
5) − (1−

√
5)) = 2

c12
√
5 = 2

c1 =
1√
5

So, the final equation for the Fibonacci numbers is:

y[n] =
1√
5

(
1+
√
5

2

)n
−
1√
5

(
1−
√
5

2

)n
.

Evaluating the numeric constants, this comes out to approximately

y[n] = 0.44721 · 1.618n − 0.44721 · (−0.618)n .

Question 5. Are there values of y[0] and y[1] such that

y[n] = c1

(
1+
√
5

2

)n
+ c2

(
1−
√
5

2

)n
converges to 0?

6.081, Spring Semester, 2007—Lecture 5 Notes 6

Figure 1: Plots of the two components of the Fibonacci series, and then their sum. The component
in the leftmost graph is due to the negative root, and we can clearly see its oscillation, but note that
the magnitude is very small. The third series is the sum of the first two, and we can see that the
large exponential series due to the positive root overwhelms the other one, and yields the familiar
fibs.

Imaginary Roots

If we examine this difference equation

y[n] = y[n− 1] − y[n− 2] ,

which is only one minus-sign different from the equation for the Fibonacci numbers, things turn
out quite a bit differently. The roots are

(λ1, λ2) =
1±
√

−3

2
.

You might worry that the fact that the roots are complex will cause us trouble. In fact, things go
surprisingly smoothly.

Our initial values are real, and all subsequent values are sums of previous values, so they have to
be real, too. So, the only concern might be that we won’t be able to find c1 and c2 to make the
equation have the right initial values. But that goes okay, too. If our initial conditions are y[0] = 0

and y[1] = 1 as before, then we still have that c1 = −c2. Now, for the second constraint:

y[1] = 1

c1

(
1+
√

−3

2

)1
+ c2

(
1−
√

−3

2

)1
= 1

c1 =
1√
−3

6.081, Spring Semester, 2007—Lecture 5 Notes 7

So, the final equation for this series is:

y[n] =
1√
−3

(
1+
√

−3

2

)n
−

1√
−3

(
1−
√

−3

2

)n
,

which turns out always to be real valued.3

To get some idea for what’s going on there, start by observing that λ1 and λ2 are always complex
conjugates. And you can probably see that c1 and c2 will also be complex conjugates of one another
(clearly true in our example above, but it’s true even when y[0] is not 0). When these things are
all multiplied out, we’ll find that any imaginary terms end up cancelling, and only real terms are
left.

Representing complex numbers

It will turn out that sometimes it’s easier to think about a complex number a + bj instead as
Mejθ, where M is the magnitude of the number (sometimes written as |a + bj|),

√
a2 + b2, and θ

is its angle, arctan(b/a). So, if we think of (a, b) as a point in the complex plane, then M,θ is its
representation in polar coordinates.

This representation is justified by Euler’s equation

exi = cos x+ j sin x ,

which can be directly derived from series expansions of ez, sin z and cos z. To see that this is
reasonable, let’s take our number, represent it as a complex exponential, and then apply Euler’s
equation:

a+ bj = Mejθ

= M cos θ+ jM sin θ
= a+ bj

So what? There are some operations on complex numbers that are much more straightforwardly
done in the exponential representation. In particular, let’s consider raising a complex number
to a power. In the cartesian representation, we get big hairy polynomials. In the exponential
representation, we get, in the quadratic case,(

Mejθ
)2

= MejθMejθ

= M2ej2θ

More generally, we have that (
Mejθ

)n
= Mnejnθ ,

which is much tidier. This is an instance of an important trick in math and engineering: changing
representations. We will often find that representing something in a different way will allow us to
do some kinds of manipulations more easily. There is no one best representation; they are better
in different circumstances.

3Of course, if you compute this numerically, you’ll end up with little residual imaginary parts; you might need to
do val.real in Python to just get the real part after the computation.

6.081, Spring Semester, 2007—Lecture 5 Notes 8

So, what happens as n tends to infinity? The first factor, Mn, will grow or shrink depending on
the magnitude of M. And the second factor will just cause the vector to rotate around and around
the origin; but because we’re always taking the sin and cos of nθ, the contribution of that factor
won’t increase or decrease substantially as n increases. This means that we can just think about
the magnitude when we want to understand the qualitative behavior of the series.

Qualitative Behavior

So, finally, what happens when we have two roots λ1 and λ2. No matter whether they’re real or
complex, positive or negative, the main issue is whether their magnitude is greater than 1. (For
complex roots, this means that they are outside the unit circle in the complex plane.) If so, the
series will diverge. If it is less than 1, it will converge to 0. If it is equal to 1, it will converge to
some non-zero value (in the case of real roots), or converge to a sinusoidal oscillation (in the case
of complex roots).

General case

The same basic story holds for linear difference equations of any order k:

y[n] = α1y[n− 1] + . . .+ αky[n− k] .

You derive the characteristic equation:

λn = α1λ
n−1 + . . .+ αkλ

n−k ,

and solve it to get roots λ1, . . . , λk. Then, using k initial conditions, you solve the set of k linear
equations in k unknowns:

y[0] = c1 + . . .+ ck

y[1] = c1λ1 + . . .+ ckλk

· · ·
y[k] = c1λ

k
1 + . . .+ ckλ

k
k

to find values for c1, . . . , ck. And then, finally, you have a closed form of

y[n] = c1λ
n
1 + . . .+ ckλ

n
k .

Well, it’s not always so smooth. First of all, there’s the issue of finding all the roots. For third and
maybe fourth order polynomials it’s not too hard, but after that you need to do it numerically and
it can be difficult to find them all. Second, it can happen that the same root will be repeated (for
instance, y[n] = 4y[n − 1] − 4y[n − 2] will generate the root 2, twice). This doesn’t happen very
much, and it gets a little tricky when it does. You can learn more about this in 6.003!

6.081, Spring Semester, 2007—Lecture 5 Notes 9

Coyotes and Roadrunners

Imagine a world populated with coyotes and roadrunners. Roadrunners eat grass and coyotes eat
roadrunners (when they can catch them). The roadrunner population naturally increases, but
when there are coyotes around, they eat the roadrunners and decrease the coyote population. The
coyote population, in the absence of roadrunners, tends to decrease, but when there are roadrunners
around to eat, they increase.

We can model this system as a set of coupled linear difference equations (though a real population
biologist would probably feed us to the coyotes for the naivete of the model). Let c[n] be the
number of coyotes in Acme valley in year n, and let r[n] be the number of roadrunners. Then, we
might say that

c[n] = γ1c[n− 1] + γ2r[n− 1] (1)
r[n] = γ3r[n− 1] + γ4c[n− 1] (2)

Imagine that Acme valley was stocked, in year 0, with 100 roadrunners and 10 coyotes. We’d like
to know how many roadrunners and coyotes it will have in years to come.

In order to do this, we need to arrange things so that we have one equation that’s about either
coyotes or roadrunners only. We can do that through some fairly straightforward algebraic manip-
ulations. Let’s start with equation 1, and see if we can make it define the roadrunner population
in some year, depending on the coyote populations in other years.

c[n] = γ1c[n− 1] + γ2r[n− 1]

c[n] − γ1c[n− 1] = γ2r[n− 1]

c[n] − γ1c[n− 1] = γ2r[n− 1]

1

γ2
c[n] −

γ1

γ2
c[n− 1] = r[n− 1] .

Now we know an expression for r[n−1] in terms of values of c; and we can also derive an expression
for r[n], just by taking the one for r[n− 1] and moving all the temporal indices forward by one:

r[n] =
1

γ2
c[n+ 1] −

γ1

γ2
c[n] .

So, we can take equation 2 and substitute these expressions in for r[n] and r[n− 1], getting:

r[n] = γ3r[n− 1] + γ4c[n− 1]

1

γ2
c[n+ 1] −

γ1

γ2
c[n] =

γ3

γ2
c[n] −

γ1γ3

γ2
c[n− 1] + γ4c[n− 1]

c[n+ 1] = (γ1 + γ3)c[n] + (γ2γ4 − γ1γ3)c[n− 1]

c[n] = (γ1 + γ3)c[n− 1] + (γ2γ4 − γ1γ3)c[n− 2]

Woo hoo! Now we have a second order difference equation, and we know what to do.

Question 6. What is the difference equation for r[n+ 1]?

Will the coyotes eat all the roadrunners and die out themselves? Will the roadrunner population
overrun the Acme valley? Only the γs and the initial conditions will tell us for sure.

Beep beep!

