
6.081, Spring Semester, 2007—Lecture 3 Notes 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.081—Introduction to EECS I
Spring Semester, 2007

Lecture 3 Notes

Object-Oriented Programming

In this lecture, we will look at a set of concepts that form the basis of modularity and abstraction
in modern software engineering, leading up to object-oriented programming.

Here is our familiar framework for thinking about primitives and means of combination, abstraction,
and capturing common patterns. In this lecture, we’ll add ideas for abstracting and capturing com-
mon patterns in data structures, and ultimately achieving even greater abstraction and modularity
by abstracting over data structures combined with the methods that operate on them.

Procedures Data
Primitives +, *, == numbers, strings
Means of combination if, while, f(g(x)) lists, dictionaries, objects
Means of abstraction def abstract data types, classes
Means of capturing common patterns higher-order procedures generic functions, classes

Environments

There is a fundamental idea in the operation of Python that we have to understand before delving
into the main subject. It is the idea of binding environment (we’ll just call them environments;
they are also called namespaces, and sometimes scopes). An environment is a stored mapping
between names and entities in a program. The entities can be all kinds of things: numbers,
strings, procedures, objects, etc. In Python, the names are strings and environments are actually
dictionaries, which we’ve already experimented with.

In Python, there are environments associated with each module (file) and one called builtin
that has all the procedures that are built into Python. If you do

>>> import __builtin__
>>> dir(__builtin__)

you’ll see a long list of names of things (like ’sum’), which are built into Python, and whose names
are defined in the builtin module. You generally don’t have to type import builtin . You can
try importing math and looking to see what names are defined there.

Another thing that creates a new environment is a function call: so, when you do something like:

def f(x):
print x

>>> f(7)

6.081, Spring Semester, 2007—Lecture 3 Notes 2

at the moment when the print statement is about to be executed, there is a local environment
that has the formal parameter x bound to actual parameter 7.

So, what happens when Python actually tries to evaluate print x? It takes the symbol x and has
to try to figure out what it means. It starts by looking in the local environment, which is the one
defined by the innermost function call. So, in the case above, it would look it up and find the value
7 and return it.

Now, consider this case:

def f(a):
def g(x):

print x, a
return x + a

return g(7)

>>> f(6)

What happens when it’s time to evaluate print x, a? First, we have to think of the environments.
The first call, f(6) establishes an environment in which a is bound to 6. Then the call g(7)
establishes another environment in which x is bound to 7. So, when needs to print x it looks in the
local environment and finds that it has value 7. Now, it looks for a, but doesn’t find it in the local
environment. So, it looks to see if it has it available in an enclosing environment; an environment
that was enclosing this procedure when it was defined. In this case, the environment associated
with the call to f is enclosing, and it has a binding for a, so it prints 6 for a. So, what does f(6)
return? 13.

If you write a file that looks like this:

a = 6
def foo():

print a

>>> foo()
6

When you evaluate foo, it won’t be able to find it in the local environment, or in an enclosing
environment created by another procedure definition. So, it will look in the global environment.
The name global is a little bit misleading; it means the environment associated with the file. So, it
will find a binding for a there, and print 6.

One way to remember how Python looks up names is the LEGB rule: it looks, in order, in the
Local, then the Enclosing, then the Global, then the Builtin environments, to find a value for a
name. As soon as it succeeds in finding a binding, it returns that one.

It’s really important to understand this, in order to make sense of some of Python’s behaviors,
which would otherwise seem mysterious.

6.081, Spring Semester, 2007—Lecture 3 Notes 3

Data structures

Data structures are organized ways of storing collections of primitive data elements. You are
probably already familiar with arrays and lists. Most languages have some sort of structure or
record; in Python, we use dictionaries for such things.

We’re going to do a running example in this lecture of keeping track of a bank account. The
simplest imaginable strategy is to just write a file and store all the data for the bank account in
the global environment for that file.

balance = 3834.22
interestRate = .0002
owner = "Monty Python"
ssn = "555121212"

def deposit(amount):
global balance
balance = balance + amount

We could add $100 to the account, and then check the balance like this:

>>> deposit(100)
>>> balance
3934.22

Why do we need the global balance statement in the deposit procedure? Because Python,
whenever it sees an assignment to a variable inside a procedure makes a new entry in the environ-
ment of that procedure with the name of the variable. So, if we didn’t have the global balance
statement in there, it would make a new local variable called balance, and then get all confused
when it couldn’t find a value for it.1 So, by saying global balance, we ask Python not to make a
new local variable named balance, which means that when we refer to balance later on, it refers
to the one defined in the global environment.

What if we wanted to add another customer to our bank? There’s a really ugly solution involving
new variables, balance2, owner2, etc., which would require a different deposit function for each
customer. Yuch. Instead, we should group together the data for each individual customer, and
build procedures that can operate on any account. Here is a way to do it using lists.

a1 = [3834.22, .0002, "Monty Python", "555121212"]
a2 = [501222.10, .00025, "Ralph Reticulatus", "453129987"]

def deposit(account, amount):
account[0] = account[0] + amount

deposit(a1,100)
>>> a1[0]

1Remember the LEGB rule: once there is a local variable with a particular name, it “shadows” any other variables
with that name in other environments, so that they cannot be referred to.

6.081, Spring Semester, 2007—Lecture 3 Notes 4

A nicer way to use lists (that makes it much more likely your program will actually be right, and
that other people will be able to understand and/or modify it) is this:

def makeAccount(balance, interestRate, name, ssn):
return [balance, interestRate, name, ssn]

def accountBalance(a):
return a[0]

def setAccountBalance(a, b):
a[0] = b

a1 = makeAccount(3834.22, .0002, "Monty Python", "555121212")
a2 = makeAccount(501222.10, .00025, "Ralph Reticulatus", "453129987")

def deposit(account, amount):
setAccountBalance(a, accountBalance(a) + amount)

deposit(a1,100)
>>> accountBalance(a1)

Dictionaries are a nice data structure for this.

a3 = {"balance": 3834.22,
"interestRate": .0002,
"owner": "Monty Python",
"ssn": "555121212"}

def deposit(account, amount):
account["balance"] = account["balance"] + amount

deposit(a3,100)
>>> a3["balance"]

There are whole worlds of interesting and complicated data structures that let you organize data
efficiently. Take 6.046 for details.

Abstract data types

Now, let’s say we need to figure out how much money the person can borrow against this account.
The credit limit is a function of the current balance. We could write it like this:

def creditLimit(account):
return account["balance"] * 0.5

So, to get the credit limit of a3, we’d say

>>> creditLimit(a3)

6.081, Spring Semester, 2007—Lecture 3 Notes 5

Another way to handle it would be to make the credit limit a field in the record. Then, we’d have
to update it whenever we did a deposit (or other operation that changed the balance).

def deposit(account, amount):
account["balance"] = account["balance"] + amount
account["creditLimit"] = account["balance"] * 0.5

Then we’d get the credit limit by saying

a3["creditLimit"]

There’s something ugly here about the fact that our representational choices are being exposed
to the user of the bank account. We can use the idea of an abstract data type (ADT) to show
a consistent interface to the “clients” of our code. In fact, that’s what we did with the second
version of the list representation in the previous section. We define a set of procedures through
which all interaction with the data structure are mediated. This set of procedures is often called
an application program interface or API.

Now our accounts can be represented any way we want. We need to start by providing a way to
create a new account. This is called a constructor.

def makeAccount(balance, rate, owner, ssn):
return {"balance": balance,

"interestRate": rate,
"owner": owner,
"ssn": ssn,
"creditLimit": balance*0.5}

a4 = makeAccount(3834.22, .0002, "Monty Python", "555121212")

Then we need to add, to the previous example, a way of accessing information about the account.

def creditLimit(account):
return account["creditLimit"]

def balance(account):
return balance["creditLimit"]

Now, we get to the credit limit in the same way, creditLimit(a4), as in the first representation,
and nobody needs to know what’s going on internally. This might seem like a lot of extraneous ma-
chinery, but in large systems, it will mean that you can easily change the underlying implementation
of big parts of a system, and nobody else has to care.

Generic functions

Our bank is getting bigger, and we want to have several different kinds of accounts. Now there is
a monthly fee just to have the account, and the credit limit depends on the account type. Here’s
a new data structure and two constructors for the different kinds of accounts.

6.081, Spring Semester, 2007—Lecture 3 Notes 6

def makePremierAccount(balance, rate, owner, ssn):
return {"balance": balance,

"interestRate": interestRate,
"owner": owner,
"ssn": ssn,
"type": "Premier"}

def makeEconomyAccount(balance, rate, owner, ssn):
return {"balance": balance,

"interestRate": interestRate,
"owner": owner,
"ssn": ssn,
"type": "Economy"}

a5 = makePremierAccount(3021835.97, .0003, "Susan Squeeze", "558421212")
a6 = makeEconomyAccount(3.22, .00000001, "Carl Constrictor", "555121348")

The procedures for depositing and getting the balance would be the same as before. But how would
we get the credit limit? We could have separate procedures for getting the credit limit for each
different kind of account.

def creditLimitEconomy(account):
return min(balance*0.5, 20.00)

def creditLimitPremier(account):
return min(balance*1.5, 10000000)

>>> creditLimitPremier(a5)
>>> creditLimitEconomy(a6)

But doing this means that, no matter what you’re doing with this account, you have to be conscious
of what kind of account it is. It would be nicer if we could treat the account generically. We can,
by writing one procedure that does different things depending on the account type. This is called
a generic function.

def creditLimit(account):
if account["type"] == "Economy":

return min(balance*0.5, 20.00)
elif account["type"] == "Premier":

return min(balance*1.5, 10000000)
else:

return min(balance*0.5, 10000000)

>>> creditLimit(a5)
>>> creditLimit(a6)

In this example, we had to do what is known as type dispatching; that is, we had to explicitly check
the type of the account being passed in and then do the appropriate operation. We’ll see later in
this lecture that Python has the ability to do this for us automatically.

6.081, Spring Semester, 2007—Lecture 3 Notes 7

Encapsulated state

In the examples so far, we have made a distinction between state or memory of the computation,
stored in variables, lists, dictionaries, etc., and the procedures that manipulate the state. In this
section, we’ll see that we can produce procedures that have encapsulated state; that is, that have
some variables associated directly with them, and that the variables can be accessed only through
those procedures.

Now it’s time to remember what we know about how environments work. Here is a crucial case of
the general rules we learned above. If a procedure creates a new procedure and returns it as a value,
that procedure has attached to it the environment that was enclosing it at the time it was defined.
It is this environment that will be used to look up names inside invocations of that procedure if
the names are not bound in the local environment. Here is an example:

def makeSimpleAccount(initialBalance):
currentBalance = [initialBalance]
def deposit(amount):

currentBalance[0] = currentBalance[0] + amount
def balance():

return currentBalance[0]
return [deposit, balance]

The procedure makeSimpleAccount takes an initial balance as input, and returns a list of two
procedures. These two procedures have references to currentBalance; that variable exists in the
enclosing environment, and that environment will remain forever attached to those procedures, so
that when they are called later on, they will refer to that same variable.

Why did we have to make currentBalance be a list of length 1, instead of just a number? This is
an ugliness in Python. The problem is that, in the deposit procedure, if currentBalance is just
a number, then we’ll have a statement that looks like

currentBalance = currentBalance + amount

and we’ll get into all the trouble we talked about earlier, having to do with creating a new local
variable, when we really wanted to refer to the one outside. Before, we fixed the problem by saying
global currentBalance. Unfortunately, that won’t work here, because the currentBalance we
want to refer to is in an enclosing environment, not the global one. So, there’s no way to assign
to a variable that’s defined in an enclosing scope. It’s a real bummer. If we make a list, however,
we’re never assigning to the variable currentBalance, but rather assigning to its first element.
Therefore, it’s never tempted to create a new local variable. Sorry for the ugliness.

Now we can make an account, check the balance, add $20, and check the balance again.

>>> a7 = makeSimpleAccount(100)
>>> a7[1]()
100
>>> a7[0](20)
>>> a7[1]()
120

6.081, Spring Semester, 2007—Lecture 3 Notes 8

What if we make a new account and do things to it?

>>> b7 = makeSimpleAccount(100)
>>> b7[1]()
100
>>> b7[0](200)
>>> b7[1]()
300
>>> a7[1]()
120

Note that it doesn’t affect our previous account at all. Each time makeSimpleAccount is called, it
makes a new enclosing environment, and a new currentBalance variable, which is only accessible
to the pair of functions that are returned. Thus, we have connected these procedures directly with
the state that they operate on; in addition, there is no way for other procedures to sneak in and
modify that state.

There is something pretty ugly about the way we have to make a deposit to the account, though.
We can take another approach:

def makeSimpleAccount(initialBalance):
currentBalance = [initialBalance]
def doIt(operation, amount = 0):

if operation == "deposit":
currentBalance[0] = currentBalance[0] + amount

elif operation == "balance":
return currentBalance[0]

else:
print "I don’t know how to do operation ", operation

return doIt

a8 = makeSimpleAccount(100)
a8("balance")
a8("deposit", 20)

a9 = makeSimpleAccount(200)
a9("balance")
a9("deposit", 100)

This is a more convenient interaction method. We will say that the doIt procedure dispatches on
the operation we want to do to the bank account.

Objects

We have now seen four important ideas: data structures, abstract data types, state, and generic
functions. These form the basis of object-oriented programming (OOP), which is a modern software
methodology. Some people advocate a very rigid application of narrow OOP methodology, but we

6.081, Spring Semester, 2007—Lecture 3 Notes 9

believe that, as with all tools, it has appropriate applications, but should not be the only tool in
our toolbox.

An object is a collection of procedures and data, attached to names in an environment. A class is
essentially the same thing, at a formal level. In practice, we define a class to describe a a generic
object type we’d like to model, like a bank account, and specify various data representations and
procedures that operate on that data. Then, when we want to make a particular bank account, we
can create an object that is an instance of the bank account class. Class instances (objects) are
environments that contain all of the values defined in the class, but that can then be specialized
for the particular instance they are intended to represent.

Here’s a very simple class, and a little demonstration of how it can be used.

class SimpleThing:
a = 6

>>> x = SimpleThing()
>>> x
<__main__.SimpleThing instance at 0x85468>
>>> x.a
6
>>> y = SimpleThing()
>>> y.a
6
>>> y.a = 10
>>> y.a
10
>>> x.a
6

To define a class, you start with a class statement, and then a set of indented assignments and
definitions. Each assignment makes a new variable within the class. Whenever you define a class,
you get a constructor, which will make a new instance of the class. In our example above, the
constructor is SimpleThing().2 When we make a new instance of SimpleThing, we get an object.
We can look at the value of attribute a of the object x by writing x.a. An object is an environment,
and this is the syntax for looking up name a in environment x. If we make a new instance of the
class, it has a separate copy of the a attribute, which we demonstrate above by changing the value
in object x and showing that the value doesn’t change in object y.

Some of you may have experience with Java, which is much more rigid about what you can do
with objects than Python is. In Python, you can add attributes to objects on the fly. So, we could
continue the previous example with:

>>> x.newAttribute = "hi"
2A note on style. It is useful to adopt some conventions for naming things, just to help your programs be more

readable. We’ve used the convention that variables and procedure names start with lower case letters and that class
names start with upper case letters. And we try to be consistent about using something called “camel caps” for
writing compound words, which is to write a compound name with the successiveWordsCapitalized. An alternative
is to use underscores.

6.081, Spring Semester, 2007—Lecture 3 Notes 10

and there would be no problem.

Here’s another example to illustrate the definition and use of methods, which are procedures whose
first argument is the object, and that can be accessed via the object.

class Square:
dim = 6

def getArea (self):
return self.dim * self.dim

def setArea (self, area):
self.dim = area**0.5

This class is meant to represent a square. Squares need to store, or remember, their dimension, so
we make an attribute for it, and assign it initially to be 6 (we’ll be smarter about this in the next
example). Now, we define a method getArea that is intended to return the area of the square.
There are a couple of interesting things here.

Like all methods, getArea has an argument, self, which will stand for the object that this method
is supposed to operate on.3 Now, remembering that objects are environments, the way we can find
the dimension of the square is by looking up the name dim in this square’s environment, which was
passed into this method as the object self.

We define another method, setArea, which will set the area of the square to a given value. In order
to change the square’s area, we have to compute a new dimension and store it in the dim attribute
of the square object.

Now, we can experiment with instances of class Square.

>>> s = Square()
>>> s.getArea()
36
>>> Square.getArea(s)
36
>>> s.dim
6
>>> s.setArea(100)
>>> s.dim
10.0

We make a new instance using the constructor, and ask for its area by writing s.getArea(). This is
the standard syntax for calling a method of an object, but it’s a little bit confusing because its argu-
ment list doesn’t really seem to match up with the method’s definition (which had one argument).
A style that is less convenient, but perhaps easier to understand, is this: Square.getArea(s).
Remembering that a class is also an environment, with a bunch of definitions in it, we can see
that it starts with the class environment Square and looks up the name getArea. This gives us
a procedure of one argument, as we defined it, and then we call that procedure on the object s.

3The argument doesn’t have to be named self, but this is a standard convention.

6.081, Spring Semester, 2007—Lecture 3 Notes 11

It is fine to use this syntax, if you prefer, but you’ll probably find the s.getArea() version to be
more convenient. One way to think of it is as asking the object s to perform its getArea method
on itself.

Here’s a version of the square class that has a special initialization method.

class Square1:
def __init__(self, initialDim):

self.dim = initialDim

def getArea (self):
return self.dim * self.dim

def setArea (self, area):
self.dim = area**0.5

def __str__(self):
return "Square of dim " + str(self.dim)

Whenever the constructor for a class is called, Python looks to see if there is a method called
init and calls it, with the newly constructed object as the first argument and the rest of the

arguments from the constructor added on. So, we could make two new squares by doing

>>> s1 = Square1(10)
>>> s1.dim
10
>>> s1.getArea()
100
>>> s2 = Square1(100)
>>> s2.getArea()
10000
>>> print s1
Square of dim 10

Now, instead of having an attribute dim defined at the class level, we create it inside the initialization
method. The initialization method is a method like any other; it just has a special name. Note
that it’s crucial that we write self.dim = initialDim here, and not just dim = initialDim. All
the usual rules about environments apply here. If we wrote dim = initialDim, it would make a
local variable called dim, but that variable would only exist during the execution of the init
procedure. To make a new attribute of the object, it needs to be stored in the environment
associated with the object, which we access through self.

Our class Square1 has another special method, str . This is the method that Python calls on
an object whenever it needs to find a printable name for it. By default, it prints something like
< main .Square1 instance at 0x830a8>, but for debugging, that can be pretty uninformative.
By defining a special version of that method for our class of objects, we can make it so when we
try to print an instance of our class we get something like Square of dim 10 instead. We’ve used
the Python procedure str to get a string representation of the value of self.dim. You can call

6.081, Spring Semester, 2007—Lecture 3 Notes 12

str on any entity in Python, and it will give you a more or less useful string representation of it.
Of course, now, for s1, it would return ’Square of dim 10’. Pretty cool.

Okay. Now we can go back to running the bank.

class Account:
def __init__(self, initialBalance):

self.currentBalance = initialBalance
def balance(self):

return self.currentBalance
def deposit(self, amount):

self.currentBalance = self.currentBalance + amount
def creditLimit(self):

return min(self.currentBalance * 0.5, 10000000)

>>> a = Account(100)
>>> b = Account(1000000)

>>> Account.balance(a)
100
>>> a.balance()
100
>>> Account.deposit(a, 100)
>>> a.deposit(100)
>>> a.balance()
300
>>> b.balance()
1000000

We’ve made an Account class that maintains a balance as state. There are methods for returning
the balance, for making a deposit, and for returning the credit limit. These methods hide the
details of the internal representation of the object entirely, and each object encapsulates the state
it needs.

If we wanted to define another type of account, we could do it this way:

class PremierAccount:
def __init__(self, initialBalance):

self.currentBalance = initialBalance
def balance(self):

return self.currentBalance
def deposit(self, amount):

self.currentBalance = self.currentBalance + amount
def creditLimit(self):

return min(self.currentBalance * 1.5, 10000000)
>>> c = PremierAccount(1000)
>>> c.creditLimit()
1500.0

6.081, Spring Semester, 2007—Lecture 3 Notes 13

This will let people with a premier account have a larger credit limit. And, the nice thing is that
we can ask for its credit limit without knowing what kind of an account it is, so we see that objects
support generic functions, as we spoke about them earlier.

However, there’s something pretty ugly about this last move. In order to make a premier account,
we had to repeat a lot of the same definitions as we had in the basic account class. That violates
our fundamental principle of laziness: never do twice what you could do once, abstract, and reuse.

Inheritance lets us make a new class that’s like an old class, but with some parts overridden. When
defining a class, you can actually specify an argument, which is another class. You are saying
that this new class should be exactly like the parent class, but with certain definitions added or
overridden. So, for example, we can say

class PremierAccount(Account):
def creditLimit(self):

return min(self.currentBalance * 1.5, 10000000)

class EconomyAccount(Account):
def creditLimit(self):

return min(self.currentBalance*0.5, 20.00)

>>> a = Account(100)
>>> b = PremierAccount(100)
>>> c = EconomyAccount(100)
>>> a.creditLimit()
100.0
>>> b.creditLimit()
150.0
>>> c.creditLimit()
20.0

This is like generic functions! But we don’t have to define the whole thing at once. We can add
pieces and parts as we define new types of accounts. And we automatically inherit the methods of
our superclass (including init). So we still know how to make deposits into a premier account:

>>> b.deposit(100)
>>> b.balance()
200

There is a lot more to learn and understand about object-oriented programming; this was just
the bare basics. But here’s a summary of how the OO features of Python help us achieve useful
software-engineering mechanisms.

1. Data structure: Object is a dictionary

2. ADT: Methods provide abstraction of implementation details

3. State: Object dictionary is persistent

4. Generic functions: Method name looked up in object

5. Inheritance: Easily make new related classes

