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Lecture 12 Notes

Discrete Probability and State Estimation

Where am 1?7

Last week, we introduced the idea of a state space, and its use for planning trajectories from some
starting state to a goal. Our assumptions in that work were that we knew the initial state, and
that the actions could be executed without error. That is a useful idealization in many cases, but
it is also very frequently false. Even navigation through a city can fail on both counts: sometimes
we don’t know where we are on a map, and sometimes, due to traffic or road work or bad driving,
we fail to execute a turn we had intended to take.

In such situations, we have some information about where we are: we can make observations of
our local surroundings, which give us useful information; and we know what actions we have taken
and the consequences those are likely to have on our location. So, the question is: how can we
take information from a sequence of actions and local observations and integrate it into some sort
of estimate of where we are? What form should that estimate take?

We’'ll consider a probabilistic approach to answering this question. We’ll assume that, as you
navigate, you maintain a belief state which contains your best information about what state you're
in, which is represented as a probability distribution over all possible states. So, it might say that
you’re sure you're somewhere in Boston, and you’re pretty sure it’s Storrow drive, but you don’t
know whether you're past the Mass Ave bridge or not (of course, it will specify this all much more
precisely).

We'll start with some basic background on probability, and then talk about how to estimate an
underlying hidden state of a changing world, based on noisy and partial observations.

Probability

Probability theory is a calculus that allows us to assign numerical assessments of uncertainty to
possible events, and then do calculations with them in a way that preserves their meaning. (A
similar system that you might be more familiar with is algebra: you start with some facts that you
know, and the axioms of algebra allow you to make certain manipulations to your equations that
you know will preserve their truth).

The typical informal interpretation of probability statements is that they are long-term frequencies:
to say “the probability that this coin will come up heads when flipped is 0.5” is to say that, in the
long run, the proportion of flips that come up heads will be 0.5. This is known as the frequentist
interpretation of probability. But then, what does it mean to say “there is a 0.7 probability that it
will rain somewhere in Boston sometime on April 29, 2007”7 How can we repeat that process a lot
of times, when there will only be one April 29, 20077 Another way to interpret probabilities is that
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they are measures of a person’s (or robot’s) degree of belief in the statement. This is sometimes
referred to as the Bayesian interpretation. In the Bayesian interpretation, you cannot be wrong
about your beliefs, but it is possible (and suboptimal, from the perspective of maximizing utility)
to be inconsistent.

So, studying and applying the axioms of probability will help us make true statements about long-
run frequencies and make consistent statements about our beliefs, by deriving sensible consequences
from initial assumptions.

We’ll just consider the case of discrete sample spaces, so we’ll let U be the universe or sample
space, which is a set of atomic events. An atomic event is just an outcome or a way the world
could be. It might be a die roll, or whether teh robot is in a particular room, for example. An
event is a subset of L. A probability measure P is a mapping from events to numbers that satisfy
the following axioms:

0
P(AUB) = P(A)+P(B)—-P(ANB)

"
—
—
—
=

Or, in English:

e The probability that something will happen is 1.

e The probability that nothing will happen is 0.

e The probability that an atomic event in the set A or an atomic event in the set B will happen
is the probability that an atomic event of A will happen plus the probability that an atomic
event of B will happen, minus the probability that an atomic event that is in both A and B will
happen (because those events effectively got counted twice in the sum of P(A) and P(B)).

Armed with these axioms, we are prepared to do anything that can be done with discrete probability!

Random variables A discrete random variable is a discrete set of values, vi ...V and a mapping
of those values to probabilities p7...pn such that p; € [0,1] and )} ;pi = 1. So, for instance, the
random variable associated with flipping a somewhat biased coin might be {heads : 0.6, tails : 0.4}.

In a world that is appropriately described with multiple random variables, the atomic event space
is the cartesian product of the value spaces of the variables. So, for example, consider two random
variables, C for cavity and A for toothache. If they can each take on the values T or F, then the
universe is

The joint distribution of a set of random variables is a function from elements of the product space
to probability values that sum to 1 over the whole space. So, for example, consider the following
table:
C

T F
T ]0.05 | 0.05 | 0.1
F | 0.1 0.8 | 0.9
0.15 | 0.85

The bold entries in the table make up the joint probability distribution. They are assignments of
probability values to atomic events, which are complete specifications of the values of all of the
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random variables. For example, P(C =T, A = F) = 0.1; that is, the probability of the atomic event
that random variable C has value T and and random variable A has value F is 0.1. Other events
can be made up of the union of these primitive events, and specified by the assignments of values
to only some of the variables. So, for instance, the event A =T is really a set of primitive events:
{{(A=T,C=F),(A=TC=T)}, which means that

PA=T)=PA=TC=T)+PA=TC=F) ,

which is just the sum of the row in the table.

The rightmost column of numbers and the bottommost row of numbers are the marginal probability
distributions of the individual random variables. So, for example, we can see from the marginals that
P(A =T) =0.1, and that P(C =T) = 0.15. Although you can compute the marginal distributions
from the joint distribution, you cannot in general compute the joint distribution from the
marginal distribution!!.

In the very special case when two random variables A and B do not influence one another, we
say that they are independent, which is mathematically defined as

P(A=a,B=b)=P(A=a)P(B=b) .

If we only knew the marginals of toothaches and cavities, and assumed they were independent, we
would find that P(C = T,A = T) = 0.015, which is much less than the value in our table. This is
because, although cavity and toothache are relatively rare events, they are highly dependent.

One more important idea is conditional probability, where we ask the probability of some event E,
assuming that some other event E, is true; we do this by restricting our attention to the part of
the sample space in E». The conditional probability is the amount of the sample space that is both
in Eq7 and E,, divided by the amount in E:

P(Eq, E3)

P(Eq|E2) = P(Ey)

So, if a patient walks into your dental practice saying that she has a toothache, what’s the proba-
bility she has a cavity? That is the conditional probability of C =T given A =T (we already know
the value of A, so our only uncertainty is about C).

PC=TA=T

PC=TA=T) = (HAU )
_ 00
N
— 05

So, although a cavity is relatively unlikely, it becomes much more likely conditioned on knowing
that the person has a toothache.

Bayes’ Rule Sometimes, for medical diagnosis or characterizing the quality of a sensor, it’s
easiest to measure conditional probabilities of the form P(symptom = T|disease = T), indicating in
what proportion of diseased patients a particular symptom shows up. (These numbers are often
more useful, because they tend to be the same everywhere, even though the proportion of the
population that has disease may differ.) But in these cases, we really want to know P(disease =
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T|symptom = T). We can use the definition of conditional probability in a form that is known as
Bayes’ Rule to get this:

P(symptom = T|disease = T)P(disease = T)

P(disease = T|symptom =T) = P(symptom =T)

This rule is often very useful, and can easily be verified:

P(E4[E2) P(EZI',‘E,‘E)Z‘;(E”
P(E1,E2) _ P(Ez E4)P(E4)
P(E2) P(Eq)P(E2)
_ P(Ez, Eq)

P(E2)

State estimation

So, now, let’s consider the application of interest: there is a system moving through some sequence
of states over time, but instead of getting to see the states, we only get to make a sequence of
observations of the system. The question is: what can we infer about the current state of the
system give the history of observations we have made?

As a very simple example, let’s consider a copy machine: we’ll model it in terms of two possible
internal states: good and bad. But since we don’t get to see inside the machine, we can only make
observations of the copies it generates; they can either be perfect, smudged, or all black.

We can model this problem as a hidden Markov model (HMM). In an HMM we model time a
discrete sequence of steps, and we can think about the state and the observation at each step. So,
we’ll use random variables Sg, S1,S>, ... to model the state at each time step and random variables
01,0,,... to model the observation at each time step. Our problem will be to compute the state
at some current time t given the past history of observations; that is, to compute

P(S¢/O1...04) .

A hidden Markov model makes a strong assumption about the system: that the state at time t is
sufficient to determine the probability distribution over the obervation at time t and the state at
time t + 1. Furthermore, we assume that the way the state at time 3 depends on the state at time
2 is the same way that the state at time 2 depends on the state at time 1, and so on; similarly for
the observations.

So, in order to specify our model of how this system works, we need to provide three sets of
probability distributions:

Initial state distribution: We need to have some idea of the state that the machine will be in at
the very first step of time that we’re modeling. This is often also called the prior distribution
on the state. We’ll write it as

P(So = S) .

It will be a collection of probability values, one for each possible state s, that sum to 1.
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State transition model
s
A good bad

good bad
P(S, 1 =5|S; =good)| 0.7 | 0.3
P(So=s)| 09 | 0.1

Initial state distribution

P(Siy1=5]S;=bad)| 0.1 | 0.9

Observation model
o

perfect smudge black

P(O,=0|S,=good)| 0.8 | 0.1 | 0.1

P(O,=o0|S;=bad)| 01 | 0.7 | 0.2

Figure 1: An HMM model of the copy-machine diagnosis problem.

State transition model: Next, we need to specify how the state of the system will change over
time. We do that by considering each possible state, s, that the system could be in at time
t, and then writing down the conditional probability distribution over S¢1,

P(St+1 = St+1\st =5y,

which specifies for each possible new state, sti1, how likely it will be, given that the system
was in state st on the time step before.

Observation model: Finally, we need to specify how the observations we make of the system
depend on the underlying state. This is often also called the sensor model. We specify it by
considering each possible value, s, that the system could be in at time t, and then writing
down the conditional probability distribution

P(O¢ = 0¢lSt =s¢)

which specifies for each possible observation o, how likely it will be, given that the system
is currently in state st.

Copy machine example

Figure 1 shows an HMM model for the copy-machine diagnosis problem. Note that the state
transition model and the observation model consist of a set of conditional distributions; each one is
represented by a separate row, conditioned on the current state. The numbers in each distribution
must, as always, add up to 1.

Our first copy So, now, let’s assume we get a brand new copy machine in the mail, and we
think it is probably (0.9) good, but we're not entirely sure. We print out a page, and it looks
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50 S0
good bad good bad
P(So=s0)| 0.9 | 0.1 0.9 | 0.1
transition
0_|7 / probabilities }13 ‘
l{o-‘l P(Sl :S1|50:S0) Oig
P(S;=s1)| 0.64 | 0.36 0.64 | 0.36
S1 S1

Figure 2: Schematic version of first transition update

perfect. Yay! Now, what do we believe about the state of the machine? We’d like to compute
P(S1 = good|O1 = perfect). We'll do this in two steps. First we’ll consider how the machine might
have changed from time step 0 to 1, and then we’ll consider what information we have gained from
the observation.

So, we’ll start by thinking about P(S7 = good), imagining that we haven’t yet seen the first printout
(or that some annoying office-mate took it by mistake). We’'ll start by realizing that the machine
could be in a good state now either because it was in a good state before and stayed good, or
because it was in a bad state before, and magically repaired itself (hal):

P(S1 = good) = P(S1 = good, Sog = good) + P(S1 = good, So = bad) .

Now, our model doesn’t give us the probability of the state at one step and the state at the next
step; but we can use the definition of conditional probability to rewrite P(Eq, E2) = P(E4|E2)P(E2)
which lets us write

P(S1 = good) = P(S1 = good|Sy = good)P(So = good) + P(S1 = good|Sg = bad)P(So = bad) .

Cool! We know those values! The conditional probabilities come from our sensor model and the
the others from our prior. So

P(S1=good) = 0.7-0.9+0.1-0.1
= 0.64

Hmm. So, according to our transition model, these copy machines disintegrate pretty quickly!
Without any new observations, we think that after the first time step, the machine only has
probabiliy 0.64 of being good.

Figure 2 shows a schematic version of this update rule, which is a good way to think about com-
puting it either by hand or in a computer. To compute an entry in the distribution P(S; = s1), you
take each element s, in P(Sy = s,) and multiply it by the transition probability P(S7 = s1/So = so),
and then sum the results.
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S1
good bad

P(S1=s1) | 0.64 | 0.36

P(O, = perfect|S; =s1) 0.8 0.1

'

512 | .036

normalize divide by 0.548

P(S| = 51|01 = perfect) | 934 | .066

Figure 3: Schematic version of first observation update

Now it’s time to take advantage of the information that it printed a perfect copy. We can use
Bayes’ rule to get:

P(O1 = perfect|S1 = good)P(S1 = good)

P(S1 = goodO1 = perfect) = P(O1 = perfect)

We know both of the terms in the numerator: one is the sensor model and the other is the value
we just computed. But what is P(O1 = perfect)? We can derive it in a way similar to that shown
above, reducing it to values that we’ve already calculated, or that we have in our sensor model.

P(O7 = perfect) = P(Oq = perfect,S1 = good) + P(O7 = perfect,S1 = bad)
= P(Oq = perfect|S1 = good)P(S1 = good) + P(O1 = perfect|S1 = bad)P(S7 = bad)
= 0.8-0.64+0.1-0.36
0.548

Now we can go back to our Bayes’ rule expression:

P(O7 = perfect|S1 = good)P(S1 = good)
P(O1 = perfect)

P(S1 = good|O1 = perfect) =

0.8-0.64

0.548
= 0.9343

Figure 3 shows a schematic version of this update rule, which is a good way to think about com-
puting it either by hand or in a computer. To compute an entry in the distribution P(S; = 51|07 =
perfect), you take each element s7 in P(So = s1) and multiply it by the observation probability
P(O7 = perfect|S; = s1). Then, you need to normalize the distribution so that it sums to 1; so you
divide each value by the sum of all the values.

Whew! After all that, we believe our copy machine more likely to be in a good state, than we did
when we got it out of the box.
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P(Sl = 51‘01 :perfect) .934 .066

P(SQ :S2|Sl = Sl)

P(S, = 52|01 = perfect) | 661 | .339

P(O, = smudged|S, =s;) 0.8 0.1

.066 | .238

divide by .304

'y

P(S, = 55|01 = perfect,0, = smudged)| 218 | .782

Figure 4: Schematic version of second transition and observation update

Our second copy Now, let’s imagine we print another page, and it’s smudged. We want to
compute P(S; = good O = perfect, 02 = smudged). Rather than writing out all the algebra again,
we’ll just do it in our schematic form, with both steps as shown in figure 4.

Ow. Now we’re pretty sure our copy machine is no good. Planned obsolescence strikes again!

General state estimation

Just for completeness sake, we’ll write out the state-update procedure for a general situation. Let
bt be the belief state at time t, after incorporating actual observations oq,..., 04

bt(S) = P(St = S|O] =01... Ot = Ot) .

Then we proceed in two steps:

Transition update :

b{+1 (st41) = P(Sty1 =5¢41/01=07...0¢ =0¢) = Z P(St41 = s¢411St = s¢)bilse) -

St

Observation update, given o]

P(O¢p1 = 0¢41lSe1 = St+1)b4/£ 1(5t+1)
bir1(se+1) = P(S41 = 5441101 = 01... Opq1 = 0441) = +
R o o o o 25, POr1 = 0e1lSe1 = s5)by4(s5)
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A very important thing to see about these definitions is that they enable us to build what is known
as a recursive state estimator. (Unfortunately, this is a different use of the term “recursive” than
we’re used to from programming languages). It means that, after each action and observation, we
can update our belief state, to get a new by¢(s). Then, we can forget the particular action and
observation we had, and just use the by(s), at, and 0¢;1 to compute by 1(s).



