Review example 1: Aunt Zelda's bank account growing from some initial balance

$$
\begin{gathered}
y[n+1]=y[n]+.05 y[n] \\
y[n+1]-1.05 y[n]=0
\end{gathered}
$$

Natural frequency is 1.05
solution grows as 1.05^{n}

Review example 2: Your robot from lab

$d=d_{\text {right }}-d_{\text {left }} \quad$ angular velocity $=$ gain $\times d=-K d$
$d[n+1]-d[n]-\delta t V \theta[n]=0$
$\theta[n+1]-\theta[n]-\delta t K d[n]=0$
....after some algebra...
$d[n+2]-2 d[n+1]+\left(1-(\delta t)^{2} V K\right) d[n]=0$
natural frequencies were complex, outside unit circle so system oscillates unstably

From difference equations to input-

 output systems- Rather than a single difference equation, think about transforming a sequence of inputs $x[n]$ to a sequence of outputs $y[n]$.
- This models lots of situations

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 1: Aunt Zelda redux

- Aunt Zelda doesn't die, but continues to \qquad make deposits and withdrawals:

$$
y[n+1]-1.05 y[n]=x[n]
$$

Example 2: A more general robot control program

- Rather than taking angular velocity x, to be Kd, let it be set by your program in some other way

$$
\begin{aligned}
& d[n+1]-d[n]-\delta t V \theta[n]=0 \\
& \theta[n+1]-\theta[n]-\delta t x[n]=0 \\
& x[n]=\text { Your control algorithm }\{\text { measurements }\}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Linear shift-invariant systems

- General form of the transformations we're dealing with

$$
\sum_{k=0}^{M} a_{k} y[n+k]=\sum_{l=0}^{N} b_{l} x[n+l]
$$

Think of this as a way of transforming one sequence into another

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Combining sequences

- Addition: $\mathrm{y}[\mathrm{n}]=\mathrm{x}_{1}[\mathrm{n}]+\mathrm{x}_{2}[\mathrm{n}]$
- Scaling: $\mathrm{y}[\mathrm{n}]=\mathrm{kx}[\mathrm{n}]$
\qquad
- Shift: $y[n]=x[n+1]$

Framework for abstraction

	sequences	systems
primitives		
Means of combination scaling shift	cascade parallel sum	
Means of abstraction	How do we make easier to work witt?	
Means of capturing common patterns		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The big idea

- Invent a way to model sequences and systems in terms of something that models the means of combination as ordinary algebra
- This lets us analyze systems using ordinary algebra
- A method for doing this is called the Ztransform

The Z-transform of a sequence $x[n]$

- Let the $x[n]$ be the coefficients of a power series in a variable called z.
- The resulting function of z is the Z-transform, $\tilde{X}(z)$ written

$$
\tilde{X}(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Note that $x[n]$ is the coefficient of z^{-n}
This is the bilateral Z-transform

$$
\begin{aligned}
& \text { Example } 2 \\
& x[n]= \begin{cases}1 & n \geqslant 0 \\
0 & n<0\end{cases} \\
& \rightarrow-2<101 i_{2} i \quad i \quad \ldots \ldots \\
& \tilde{X}(z)=1 \cdot z^{0}+1 \cdot z^{-1}+1 \cdot z^{-2}+1 \cdot z^{-3}+\cdots \\
& =1+z^{-1}+z^{-2}+z^{-3}+\cdots \\
& =\frac{1}{1-z^{-1}}
\end{aligned}
$$

Example 3

\qquad
\qquad
$\tilde{\chi}(z)=\sum_{n=0}^{\infty} \alpha^{n} z^{-n}$
$=\sum_{n=0}^{\infty}\left(\alpha z^{-1}\right)^{n}=\frac{1}{1-\alpha z^{-1}}$

Quiz

- What is the Z-transform of

Why the Z-transform is nice

\qquad

- addition and scaling transform to addition \qquad

\[

\]

Why the Z-transform rocks

- Shifting transforms to multiplication by z : \qquad
If $y[n]=x[n+1]$
then $\tilde{Y}(z)=z \tilde{X}(z)$
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { Proof } \\
& \text { If } y[n]=x[n+1] \text { then } \\
& \tilde{Y}(z)=\sum_{n=-\infty}^{\infty} y[n] z^{-n}=\sum_{n=-\infty}^{\infty} x[n+1] z^{-n} \\
& =z \sum_{n=-\infty}^{\infty} x[n+1] z^{-(n+1)} \\
& =z \sum_{n=-\infty}^{\infty} x[n] z^{-n}=z \tilde{X}(z)
\end{aligned}
$$

- What is the Z-transform of

$$
\cdots \int_{-2}^{0} i=i_{2} i
$$

\qquad
\qquad

$$
\begin{aligned}
& \text { What does this mean for systems? } \\
& \begin{array}{c}
\sum_{k=0}^{M} a_{k} y[n+k]=\sum_{l=0}^{N} b_{l} x[n+l] \\
\text { For the transforms, we have } \\
\left(\sum a_{k} z^{k}\right) \tilde{Y}(z)=\left(\sum b_{l} z^{l}\right) \tilde{X}(z) \\
\frac{y[n]}{\longrightarrow} \\
\frac{\tilde{Y}(z)}{\tilde{X}(z)}=\frac{\sum b_{k} z^{k}}{\sum a_{l} z^{l}}=\tilde{H}(z)
\end{array}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Aunt Zelda's bank

$$
\begin{gathered}
\xrightarrow{\tilde{X}(z)} \xrightarrow{\tilde{H}_{\text {Bank }}(z)} \stackrel{\tilde{Y}(z)}{\longrightarrow} \\
y[n+1]-1.05 y[n]=x[n] \\
z \tilde{Y}(z)-1.05 \tilde{Y}(z)=\tilde{X}(z) \\
\tilde{H}_{\text {Bank }}(z)=\frac{\tilde{Y}(z)}{\tilde{X}(z)}=\frac{1}{z-1.05}
\end{gathered}
$$

Quiz

$y[n+2]-3 y[n+1]+y[n]=2 x[n+1]+3 x[n]$ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What happens with system functions when we combine systems?

composition (cascade)

Example 2: A more general robot control program

- Rather than taking angular velocity x , to be Kd, let it be set by your program in some other way

$$
\begin{aligned}
& d[n+1]-d[n]-\delta t V \theta[n]=0 \\
& \theta[n+1]-\theta[n]-\delta t x[n]=0 \\
& x[n]=\text { Your control algorithm }\{\text { measurements }\}
\end{aligned}
$$

Example: Analyzing the robot control program in the frequency domain

$d[n+1]-d[n]=\delta t V \theta[n] \quad \tilde{D}(z)=\frac{\delta t V}{z-1} \tilde{\Theta}(z)$
$\theta[n+1]-\theta[n]=\delta t x[n] \quad \tilde{\Theta}(z)=\frac{\delta t}{z-1} \tilde{X}(z)$
$\tilde{D}(z)=\frac{\delta t V}{z-1} \cdot \frac{\delta t}{z-1} \tilde{X}(z)=\frac{(\delta t)^{2} V}{z^{2}-2 z+1} \tilde{X}(z)$

$$
d[n+2]-2 d[n+1]+d[n]=(\delta t)^{2} V x[n]
$$

Framework for abstraction

	sequences	systems
primitives	addition	addi scaling shift
Means of combination parallel sum abstraction	Z-transform	System function
Means of capturing common patterns		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 2 (continued)

- Let $d[n]$ be the difference $d_{\text {right }}[n]-d_{\text {efft }}[n]$. Let $x[n]$ be the robot's angular velocity

$$
\begin{aligned}
& d[n+1]-d[n]-\delta t V \theta[n]=0 \\
& \theta[n+1]-\theta[n]-\delta t x[n]=0 \\
& x[n]=\text { Your control algorithm }\{\text { measurements }\}
\end{aligned}
$$

Here's the method you used in lab last week

$$
x[n]=K e[n]=K\left(d_{\text {desired }}[n]-d[n]\right)
$$

I.e., set $\mathrm{x}[\mathrm{n}]$ to be some constant K times the error, where the error is the difference between what we want and what we have.

Let's use frequency-domain methods to redo the
\qquad
\qquad
\qquad
\qquad
\qquad same analysis we did previously.

Negative feedback configuration \qquad

$$
\frac{\tilde{Q}(z)}{\widetilde{P}(z)}=\frac{\tilde{H}(z)}{1+\tilde{H}(z)}
$$

Black's formula
\qquad
\qquad
\qquad

Compute system function for overall robot control system with feedback

$\frac{\tilde{D}(z)}{\tilde{D}_{\text {desired }}(z)}=\frac{\tilde{H}(z)}{1+\widetilde{H}(z)}$
where

$$
\tilde{H}(z)=K \tilde{H}_{\text {Robot }}(z)=\frac{K(\delta t)^{2} V}{z^{2}-2 z+1}
$$

Compute system function for overall robot control system with feedback (cont)
$\frac{\tilde{D}(z)}{\tilde{D}_{\text {desiried }}(z)}=\frac{\frac{K(\delta t)^{2} V}{z^{2}-2 z+1}}{1+\frac{K\left(\delta t^{2} V\right.}{z^{2}-2 z+1}}$
$=\frac{K(\delta t)^{2} V}{z^{2}-2 z+\left(1+K(\delta t)^{2} V\right)}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Compute system function for overall robot
control system with feedback (cont)

$\frac{\tilde{D}(z)}{\tilde{D}_{\text {desired }}(z)}=\frac{\frac{K(\delta t)^{2} V}{z^{2}-2 z+1}}{1+\frac{K(\delta)^{2} V}{z^{2}-2 z+1}}$
$=\frac{K(\delta t)^{2} V}{z^{2}-2 z+\left(1+K(\delta t)^{2} V\right)}$

Compute system function for overall robot control system with feedback (cont)
$\frac{\tilde{D}(z)}{\tilde{D}_{\text {desised }}(z)}=\frac{\frac{K(\delta t)^{2} V}{z^{2}-2 z+1}}{1+\frac{K(\delta)^{2} V}{z^{2}-2 z+1}}$
Natural frequencies are the roots of the denominator

This is unstable, just as we knew at the
$=\frac{K(\delta t)^{2} V}{z^{2}-2 z+\left(1+K(\delta t)^{2} V\right)}$ beginning of the lecture.
So what's the point of
 going through this?

Now we have a way of analyzing what happens with other control laws

We can replace K by a more elaborate control law, for example
\qquad
\qquad
\qquad
\qquad

$$
x[n]=K_{1} e[n]+K_{2} e[n-1]
$$

Redo the analysis with
$\frac{\tilde{X}(z)}{\tilde{E}(z)}=K_{1}+K_{2} z^{-1}$

