Review example 1: Aunt Zelda's bank account growing from some initial balance

y[n+1] = y[n] + .05 y[n]

y[n+1]-1.05y[n]=0

Natural frequency is 1.05

solution grows as 1.05ⁿ

- Rather than a single difference equation, think about transforming a sequence of inputs x[n] to a sequence of outputs y[n].
- · This models lots of situations

	sequences	systems
primitives		
Means of combination	addition	cascade
	scaling	parallel sum
	shift	
Means of abstraction	How do we make easier to work with	
Means of		
capturing common patterns		

The big idea

- Invent a way to model sequences and systems in terms of something that models the means of combination as ordinary algebra
- This lets us analyze systems using ordinary algebra
- A method for doing this is called the *Z*-*transform*

The Z-transform of a sequence x[n]

- Let the x[n] be the coefficients of a power series in a variable called *z*.
 The resulting function of *z* is the Z-transform, X̃(z)
- The resulting function of z is the Z-transform, X(z)written $\widetilde{Y}(z) = \sum_{n=1}^{\infty} \sqrt{2\pi z^{n}}$

$$\bar{X}(z) = \sum_{n = -\infty} x[n] z^{-n}$$

Note that x[n] is the coefficient of z^{-n}

This is the bilateral Z-transform

Example 2

$$x[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

$$\widetilde{X}(z) = 1 \cdot z^{0} + 1 \cdot z^{-1} + 1 \cdot z^{-2} + 1 \cdot z^{-3} + \cdots$$

$$= 1 + z^{-1} + z^{-2} + z^{-3} + \cdots$$

$$= \frac{1}{1 - z^{-1}}$$

Example 3

$$x[n] = \begin{cases} \alpha^{n} & n \ge 0 \\ 0 & n < 0 \end{cases}$$

$$\tilde{\chi}(2) = \sum_{\substack{n=0\\n=0}}^{\infty} \alpha^{n} z^{-n}$$

$$= \sum_{\substack{n=0\\n=0}}^{\infty} (\alpha z^{-1})^{n} = \frac{1}{1 - \alpha z^{-1}}$$

Quiz

y[n+2]-3y[n+1]+y[n] = 2x[n+1]+3x[n]What's the system function?

	sequences	systems
primitives		
Means of combination	addition scaling shift	cascade parallel sum
Means of abstraction	Z-transform	System function
Means of capturing common patterns		

$$x[n] = Ke[n] = K(d_{desired}[n] - d[n])$$

I.e., set x[n] to be some constant K times the error, where the error is the difference between what we want and what we have.

Let's use frequency-domain methods to redo the same analysis we did previously.

Compute system function for overall robot
control system with feedback (cont)
$$\frac{\tilde{D}(z)}{\tilde{D}_{desired}(z)} = \frac{\frac{K(\hat{\alpha})^2 V}{z^2 - 2z + 1}}{1 + \frac{K(\hat{\alpha})^2 V}{z^2 - 2z + 1}}$$
$$= \frac{K(\hat{\alpha})^2 V}{z^2 - 2z + (1 + K(\hat{\alpha})^2 V)}$$

We can replace K by a more elaborate control law, for example

 $x[n] = K_1 e[n] + K_2 e[n-1]$

Redo the analysis with

$$\frac{\widetilde{X}(z)}{\widetilde{E}(z)} = K_1 + K_2 z^{-1}$$

