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Lecture Notes

Difference Equations and Z Transforms

Zee secret is in zee transforms.

Difference Equations with Input

So far, we’ve used difference equations to model the behavior of systems whose values at some time
depend only on their own values at some previous time points. But it is also important to consider
systems that depend on an input value, as well.

Let’s get the idea by considering a very simple example to start.

Example 1 Let’s think about a simple first-order system with a constant input. We can think, for
instance, of a bank account, like Zelda’s or Oswald’s, into which a constant payment c is deposited
each year.

We would model that system using the difference equation

y(n) = αy(n − 1) + c .

Because of the input, c, it is called a non-homogenous difference equation. Because it is so simple,
we can see what’s going on just by expanding it out:

y(n) = αy(n − 1) + c

= α(αy(n − 2) + c) + c

= α(α(αy(n − 3) + c) + c) + c

. . .

= αny(0) + c

n∑
i=0

αi

= αny(0) + c
1 − αn+1

1 − α
.

That last step is the standard formula for the sum of a geometric series.

What will happen to this bank account as n goes to infinity? It’s clear that if |α| > 1 then the
first term will go to positive or negative infinity, and we needn’t bother thinking about the second
term. However, if |α| < 1, then as n goes to infinity, the whole expression goes to c/(1 − α).

So, for example, if Uncle Oswald lived forever, with a $100/year being deposited into his account,
which as you may recall, had a 5% management fee, the steady state value of the account would be
100/(1 − 0.95) = 2000.
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More generally, a linear difference equation with input can be described in the form

K∑
k=0

aky(n + k) =

L∑
l=0

blx(n + l) . (1)

We can think about it as a process by which a sequence x(n) is transformed into a new sequence
y(n). If x(n) = 0 for all n, then this is one of our old familiar homogeneous (without input)
difference equations from last time, but written slightly differently. To convert back into that form,
we’d have to say

y(n) = −

K∑
k=1

aK−1

ak
y(n − k) .

For the study of the behavior of more complex systems, we’ll find it algebraically easier to write
difference equations in the form of equation 1.

For difference equations with inputs, natural frequencies play an important role, and can be used
to compute solutions. The general solution to a linear difference equation has two parts, one of
which depends only on the initial conditions, and one of which depends on the input. The details
of how to derive a complete closed-form solution are cool, but more detail than we want to get
into in this course. We are going to continue to concentrate on the qualitative behavior of systems
described by difference equations, in particular understanding whether or not a given system will
be stable in the sense made precise by the definition below.

Definition 1 A system is bounded-input bounded-output (BIBO) stable if x(n) being bounded for
all n necessarily implies that y(n) will also be bounded for all n.

For linear difference equations, If the natural frequencies (roots of the characteristic polynomial)
λi associated with the difference equation are all such that |λi| < 1, then the associated system is
BIBO-stable. So, our first step in understanding the behavior of a system, with or without input,
is to determine the magnitude of the system’s natural frequencies. In the format of equation 1, the
natural frequencies are the roots of the characteristic polynomial

K∑
k=0

akλk = 0 .

Abstraction and modularity

We’ve introduced two kinds of objects in our informal discussion above: sequences and transforma-
tions on sequences. As we build complex control or signal-processing systems, or wish to analyze
Aunt Zelda’s secret financial empire of linked companies, investments, and bank accounts, we need
to develop a system of modularity and abstraction so we can put small pieces together into a clearly
understood and analyzable system.

We will restrict our attention to a limited but powerful class of sequences, thoses which are solutions
to difference equations with input sequences which are bounded. We can start by defining a set
of primitive operations on sequences, ones which guarantee that there is a difference equation that
relates the given input, usually denoted as x(n), to the final output, usually denoted y(n). These
primative operations are:
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• Addition: y(n) = x1(n) + x2(n)

• Scaling: y(n) = kx(n)

• Shifting back: y(n) = x(n − 1)

• Shifting forward: y(n) = x(n + 1)

Note that the general difference equation in ( 1) can be generated by a combination of scaling,
shifting, and adding. Regardless of whether we are referring to one of the primative operations, or
to a general difference equation, we think of a system as taking an input sequence and producing
an output sequence.

When representing more complicated systems, two primary methods of combination for systems are
quite helpful:

• Cascade: Using the output sequence of one system as the the input to another system,
• Parallel sum: Summing the sequences generated by two different systems, to generate an output

In the next sections, we’ll be able to define this all much more formally.

The important thing here is that when we combine systems, we get another system, and that
system has the property that the relationship between the input sequence and the output sequence
is describable by a linear difference equation.

Z Transforms

In the Coyote and Roadrunner example from the last lab, we had to play with two coupled linear
difference equations. We made it all work out, but it was a lot of algebra. We could think of that
as a cascade of two systems, with the output of one (the coyote population) being treated as input
to the other (the roadrunner population) and vice versa. As we want to build ever more complex
systems, the algebra will get even more complicated, and not be any fun.

Remember how we made multiplication of complex numbers a lot easier by changing to the complex
exponential representation? It turns out that we can make operations on sequences a lot easier
represent by changing the sequence representation, using something called the z transform (also
known as generating functions in much of the computer science literature). The z-transform rep-
resentation of a sequence is no weaker or stronger than the sequence representation: a sequence
has has exactly one representation as a z transform, and every power series representation of a z
transform corresponds to exactly one sequence. It’s easier to calculate values of the generated by
a system using the difference equation representation, and we will see that it is easier to combine
sequences and operate on them using the z-transform representation.

So here we go. The official z-transform definition:

Definition 2 Let x(n) be a sequence. The bilateral Z-transform of x(n) is the function

X̃(z) =

∞∑
n=−∞ x(n)z−n .

What is this about? If we picked a particular z, then this would just be a number, which summed
up the power series for that z. But the number wouldn’t be a unique representation of that series,
because there are other series that could have the same sum for that particular value of z. But if
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we were to specify the coefficients of the power series representation of X̃(z), that would exactly
nail down the corresponding sequence. So, we’ve traded an infinitely sequence in n for an infinite
long power series in z. It doesn’t necessarily seem like much of a deal. But we’ll see it was a good
move.

For all sorts of simple sequences we’re interested in, the whole function representing the z transform
is just a simple algebraic function of z. For example,

x(n) =

{
1 if n = 0

0 otherwise
↔ X̃(z) = 1

x(n) =

{
1 if n ≥ 0

0 otherwise
↔ X̃(z) =

1

1 − z−1

x(n) =

{
dn if n ≥ 0

0 otherwise
↔ X̃(z) =

1

1 − dz−1

Now, we can describe the behavior of primitive operations on sequences using the z-transform
representation of the input and output sequences.

y(n) = x1(n) + x2(n) ↔ Ỹ(z) = X̃1(z) + X̃2(z)

y(n) = kx(n) ↔ kX̃(z)

y(n) = x(n − 1) ↔ 1

z
X̃(z)

y(n) = x(n + 1) ↔ zX̃(z)

System functions

The previous set of results gives us a hint that we might be able to represent system functions,
in general, using a version of the z-transform representation. Recall our basic linear difference
equation with input:

K∑
k=0

aky(n + k) =

L∑
l=0

blx(n + l) .

Because each of these terms is either x(n) or y(n) shifted into the future, we can write them using
their z-transforms, multiplied by z raised to the power of how far it is shifted:

K∑
k=0

akzkỸ(z) =

L∑
l=0

blz
lX̃(z) K∑

k=0

akzk

 Ỹ(z) =

 L∑
l=0

blz
l

 X̃(z)

Ỹ(z)

X̃(z)
=

∑L
l=0 blz

l∑M
k=0 akzk

We can summarize the transformation that this difference equation specifies between the input
sequence x(n) and the output sequence y(n) with this ratio of polynomials in z, which is called the
system function and written H̃(z).
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So, when a signal X̃(z) is fed into a system with system function H̃(z), the output Ỹ(z) = X̃(z)H̃(z).
All the operations we do on system functions will preserve this representation of them as ratios of
polynomial functions in z.

So, when we feed an input signal into two separate boxes with system functions H̃1(z) and H̃2(z),
and sum the outputs, we can abstract that whole contraption as its own transformation, with
system function

H̃(z) = H̃1(z) + H̃2(z) .

Even cooler, when we make a cascade by feeding an input signal into a box with system function
H̃1(z), and feed that output of that into a box with system function H̃2(z), the resulting combined
box can be abstracted and described using the system function

H̃(z) = H̃1(z)H̃2(z) .

Is that cool, or what? Just a simple polynomial multiplication describes the connection between
two arbitrarily hairy difference equations.

Having done any number of these operations on system functions, we always end up with a ratio
of polynomials. And given that ratio of polynomials,

H̃(z) =

∑L
l=0 blz

l∑K
k=0 akzk

,

we can do two very important things.

First, we can reveal the qualitative behavior of the system over the long term by finding the poles
of the system. These are the roots λ1, . . . , λM, of the characteristic polynomial,

K∑
k=0

akzk = 0 .

As we’ve seen already, if any of the λi have magnitude greater than 1, then the system could be
unstable for some input sequences.

Second, we can always turn it back into a brand new difference equation, which we can use to, for
example, iteratively compute the value of the sequence at some particular point.

Feedback

We can use the operations on system functions that we already have to construct a basic pattern
that is incredibly common and important: negative feedback. The simplest system is one built
around a system with system function H̃(z), generating an output sequence we’ll call Q̃(z). The
output is fed back and subtracted from an input sequence P̃(z), which can often be thought of as
specifying a desired output value, or “set point”. This difference, which we’ll call R̃(z) is used as
the input to the box described by H̃(z). Add a figure; for now, see lecture slide.

So, we can describe this set-up using operations on the z-transform representation of signals:

R̃(z) = P̃(z) − Q̃(z)

Q̃(z) = H̃(z)R̃(z)
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And we can solve for the system function describing the whole system, with input P̃(z) and output
Q̃(z) straightforwardly:

Q̃(z) = H̃(z)R̃(z)

Q̃(z) = H̃(z)(P̃(z) − Q̃(z))

Q̃(z) = H̃(z)P̃(z) − H̃(z)Q̃(z)

Q̃(z)(1 + H̃(z)) = H̃(z)P̃(z)

Q̃(z)

P̃(z)
=

H̃(z)

1 + H̃(z)

This result is called Black’s formula.

Coyotes and Roadrunners, revisited

Recall the coyote and roadrunner population equations from last time:

c(n) = γ1c(n − 1) + γ2r(n − 1)

r(n) = γ3r(n − 1) + γ4c(n − 1)

The system function represented by the first equation (where r is the input and c is the output) is

H̃C(z) =
γ2

z − γ1
,

and system function represented by the second equation (where c is the input and r is the output)
is

H̃R(z) =
γ4

z − γ3
.

Let’s actually assume that there’s a controlled release program of roadrunners. So, there’s actually
a number x(n) of roadrunners added to the existing population every year.

Now, we can understand the coupled system, in terms of the coyote population, by working in the
z-transform domain:

C̃(z) = H̃C(z)R̃(z)

R̃(z) = H̃R(z)C̃(z) + X̃(z)

We can expand and solve to see the how the coyote population evolves, depending on the number
of roadrunners added to the system:

C̃(z) = H̃C(z)R̃(z)

C̃(z) = H̃C(z)(H̃R(z)C̃(z) + X̃(z))

C̃(z) =
γ2

z − γ1

(
γ4

z − γ3
C̃(z) + X̃(z)

)
C̃(z)

(
1 −

γ2γ4

(z − γ1)(z − γ3)

)
=

γ2

z − γ1
X̃(z)

C̃(z)

X̃(z)
=

γ2
z−γ1

1 − γ2γ4
(z−γ1)(z−γ3)

C̃(z)

X̃(z)
=

γ2(z − γ3)

z2 − (γ1 + γ3)z + γ1γ3 − γ2γ4
.
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So, first of all, when does this system have a hope of being stable? When

|
1

2

(
γ1 + γ3 ±

√
γ2

1 + γ2
3 − 2γ1γ3 + 4γ2γ4

)
| < 1 .

To make this more concrete, if γ1 = 1.1, γ2 = −0.5, γ3 = 0.4, γ4 = 0.3, then

(λ1, λ2) = 0.75± 0.1658j ,

and because those numbers have magnitude 0.768115, the system will not diverge.

Second, what difference equation describes this system? It’s

c(n + 2) + (γ1 + γ3)c(n + 1) + (γ1γ3 − γ2γ4)c(n) = γ2x(n + 1) − γ2γ3x(n) ,

or, in our concrete case,

c(n + 2) − 1.5c(n + 1) + 0.59c(n) = −0.5x(n + 1) + 0.2x(n) .

If we let x(n) = 10, for all n, then it will turn out that we converge on a steady-state coyote
population of about 22. If x(n) = 0 (we don’t release additional roadrunners every year), then the
coyotes die out.


