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MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.099—Introduction to EECS I
Fall Semester, 2006

Assignment for Week 13

• Issued: Tuesday, Nov 28
• Includes homework and preparation due before class on Thursday, Nov 30
• Post-lab: Due December 5

Final exam: The final exam for 6.081 will be held on Tuesday, December 19. It is a 6-hour ex
camera (take-home) exam, starting at 1:30PM. It will consist primarily of conceptual and technical
questions motivated by the lab on December 5 and 7, which will, we hope, integrate all the material
we have covered in the course.

Planning

So far, our robots have always chosen actions based on a relatively short-term or “myopic” view
of what was happening. They haven’t explicitly considered the long-term effects of their actions.
One way to select actions is to mentally simulate their consequences: you might plan your errands
for the day by thinking through what would happen if you went to the bank after the store rather
than before, for example. Rather than trying out a complex course of action in the real world, we
can think about it and, as Karl Popper said, “let our hypotheses die in our stead.” We can use
state-space search as a formal model for planning courses of action, by considering different paths
through state space until we find one that’s satisfactory.

There are two big gaps between state-space search as we have studied it so far, and the reality of
the robot.

First, the basic search model assumes we know the initial state of the system. We don’t know the
robot’s pose exactly—we spent much of last lab just trying to figure out where the robot is, and
ending up with a distribution over its pose. We will make a big assumption for the purposes of
planning, that the robot is actually in the pose that is currently the most likely, according to the
belief state.

Second, the basic search model assumes that the “dynamics” of the world are deterministic. That
is, among the set of possible successors of a state, we can reliably choose which one will occur. This
is like assuming there is no noise in the transition model, and each action has exactly one outcome
state, with probability one. We will make this assumption for the purposes of planning.

This is strategy might seem pretty misguided. We don’t know where the robot is, and we don’t
know what the outcomes of its actions are going to be, but we’re going to close our eyes and
generate plans anyway. This would be completely ridiculous if we were then going to execute the
entire plan without looking at the world again. But we will gain a large measure of robustness by
pursuing an approach called continuous replanning. This means that after the robot takes the first
step of a plan, we will re-estimate the pose, take the most likely one to be our initial state, and
re-plan. Thus, errors in localization and execution can be corrected after a single step.

There are still a lot of details to be ironed out before we get this all to work, which we’ll talk about
later.
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1. Homework in preparation for lab on Nov. 30

There are problems to work with the online tutor, some of which review material from earlier in the
semester. You can also use the tutor to check your answers to the following programming problem.

Experimenting with breadth-first search

The code file search.py contains the breadthfirst and numberTest code discussed in lecture.
Load this into Python (not SoaR, just ordinary Python) so you can experiment with it.

Try the code: Generate some paths that produce designated numbers by a sequence of doubling,
adding 1, subtracting 1, or squaring. For example, show how to generate 99, starting at 1. As you
try various numbers, take note of the number of steps in the search and the length of the remaining
agenda. Try the search both with and without using an expanded list.

Robot on an infinite grid: Consider a robot is on an infinite grid, with the squares labeled
(i, j) for all integers i and j. The robot can move one square north, south, east, or west. Create
a modified version of numberTest that will plan a path for the robot from an initial square to a
designated goal square. This requires only a small change to numberTest. In fact, the only thing
you need to change is the definition of successors. Try finding paths from (0, 0) to (n, n) for
various small values of n, both with and without using an expanded list.

Forbidden squares: Modify your program to also take a list of “forbidden” squares that the
robot cannot move into. Name your procedure gridTestForbidden, and have it take four argu-
ments: an initial square, a goal square, a list of forbidden square, and a boolean that says whether
or not to use an expanded list. For example,
gridTestForbidden((0,0), (4,4), ((1,0),(0,1)), True)
should generate a path from (0, 0) to (4, 4) that does not go through either (1, 0) or (0, 1).

Knight’s moves: According to the rules of chess, a knight on a chessboard can move two squares
vertically and one square horizontally, or two squares horizontally and one square vertically. Modify
your robot program so that it finds a path of knight’s moves from a given initial square to a given
goal square on an 8 × 8 chessboard. Make sure to check that the knight remains on the board at
each step. Use your program to find a path that a knight could take to get from the lower left
corner of the chessboard (1, 1) to the upper right (8, 8).

You can use the tutor to check your answers as you work through this part of the assignment.

2. In lab on Nov. 30

Now we’re going to use search algorithms to plan paths for the robot. The biggest question, as
always, is how to take our formal model and map it onto the real world. We’ve already discussed an
approach for dealing with the uncertainty in state estimation and transitions by pretending they’re
deterministic and using continuous replanning.
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Now we need to define a search problem, by specifying the state space, successor function, goal
test, and initial state. The choices of the state space and successor function typically have to be
made jointly: we need to pick a discrete set of abstract states of the world and an accompanying
set of actions that can reasonably reliably move between those states. What is an abstract state?
You can think of it as a set of states in the underlying state space.

Here is one candidate abstraction:

states: Let the states be a set of squares in the x, y coordinate space of the robot. In this
abstraction, the planner won’t care about the orientation of the robot; it will think of the
robot as moving from grid square to grid square without worrying about its heading. When
we’re moving from grid square to grid square, we’ll think of it as moving from the center of
one square to the next; and we’ll know the real underlying coordinates of the centers of the
squares.

actions: The robot’s actions will be to move North, South, East, or West from the current grid
square, by one square, unless such a move would take it to a square that isn’t free (could
possibly cause the robot to collide with an obstacle). The successor function returns the
results of all actions that would not cause a collision.

goal test: The goal test can be any Boolean function on the location grids. This means that
we can specify that the robot end up in a particular grid square, or any of a set of squares
(somewhere in the top row, for instance). We cannot ask the robot to move to a particular
x, y coordinate at a finer granularity than our grid, to stop with a particular orientation, or
to finish with a full battery charge.

initial state: The initial state can be any single grid square. It is important that the state
estimator use a representation that is at least as fine-grained as the state space of the planner,
so that we know what initial state is most likely.

So, the planning part of this is relatively straightforward. Here’s the code we use to invoke the
search procedure, which should feel very familiar to you.

def plan(init, goal, gridMap):

def s((i,j)):

return [s for s in ((i-1,j),(i,j-1),(i,j+1),i+1,j)) if gridMap.free(s)]

def g(node):

return node.state == goal

result = search.breadthFirst(init, g, s, True)

return result

The hard part of making this work is building up the framework for executing the plans once we
have them. We can think of the overall system now as being composed of high-level steps and
low-level steps. (In the code, these are called big step and little step).

In a high-level step, the robot

• Updates its belief about the current pose and returns the most likely state
• Calls the planner to get a path to the goal from the most likely state
• Executes the first step of the plan
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Execution of a plan step requires many low-level steps of velocity adjustment, until the “waypoint”
(in this case, the center of the grid square that’s the first step of the path) is reached.

In a low-level step, the robot computes new forward and rotational velocities based on the current
sonar and odometry readings. (In fact, in the code we’re giving you, the robot ignores the sonar
in the low-level driving, which is not a good idea, but we didn’t have time to fix it. We’d love it if
one of you would like to!) It checks to see if we are close enough to the low-level goal, or waypoint,
and if so, tells the high-level control loop about it.

A Simple Example

Let’s work through an example, in terms of what happens on successive low-level steps of the brain.
Imagine that the robot is in square (1,1), and also believes it is in square (1,1), and wants to reach
square (2,2).

Step 1:

1. In the first big step, we update the state estimate and find that our most likely location
is (1,1).

2. Then we call the planner, and receive the plan ((1,1),(1,2),(2,2)).

3. Now we need to execute the high-level action of driving from (1,1) to (1,2), which is the
first step of our plan. We store the local goal (1,2).

4. We ask the DriveModule for the best wheel velocities for driving toward (1,2), and set
those as our motor output.

Step 2:

1. We test to see if we’re close enough to (1,2) to terminate the high-level action. We
aren’t.

2. We get velocities from the DriveModule and execute them.

Step k:

1. We test to see if we’re close enough to (1,2) to terminate the action. We are. We change
the status of the driver to be finished and don’t move.

Step k+1: We notice that the low-level action terminated and that it’s time for a new big step!

1. We update the state estimate and find that our most likely location is (1,2).

2. Then we call the planner, and receive the plan ((1,2),(2,2)).

3. Now we need to execute the high-level action of driving from (1,2) to (2,2), which is the
first step of our plan. We store the local goal (2,2).

4. We ask the DriveModule for the best wheel velocities for driving toward (2,2), and set
those as our motor output.

5. Return to Step 2, with new local goal of (2,2).

Of course, it’s entirely possible that when we do the state estimation on step k + 1, we’ll find that
the robot seems to be in another location altogether. That’s okay. We’ll just make a plan from
there to the goal and execute the first step, and see where we wind up!
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How the driver really works

Now we’re really getting to the nitty gritty. What does it mean for the robot to go from (1,1) to
(1,2)? We have to be able to set velocities that take the robot closer to (1,2) and to know when it
has gotten there.

One way of deciding whether it has arrived at the goal would be to do pose estimation after every
small step, and to stop when the most likely pose is (1,2). There are a number of reasons why this
is not such a good idea.

Question: What are they?

Instead, we are going to use the robot’s local odometry to drive from one square to another. We
know we shouldn’t trust the odometry over a very long distance, but for local moves it isn’t too
bad. And, if we occasionally really mess up, state estimation and the high-level planner will take
care of the problem.

Now we have to do some playing around with coordinate frames. First of all, (1,2) are indices into
the grid; we need to convert those grid indices into real-valued coordinates in the global frame,
which is the frame we are using for state estimation. We can use those coordinates to obtain
the vector (dxg, dyg) in the global frame that will move the robot from the current pose to the
destination pose. Now, the odometry is reported in a completely different reference frame that
generally has no connection to this global frame. We need to put our desired displacement vector
into the odometry frame.

You know the robot’s pose in the odometry frame (xo, yo, θo), and your best guess at its pose in the
current global frame (xg, yg, θg). You also have some goal, (x′

g, y
′
g), in the global frame. The key is

that regardless of what frame you’re in, you could move the robot from the current location to the
desired location by turning by some angle dθ, and moving in that direction some distance D.

The desired change in position in the global frame is dposg = (dxg, dyg). The angle dθ is the
difference between the heading that would move the robot toward the goal and the current heading:
dθ = tan 2(dyg, dxg) − θg. The distance is the magnitude of the change in position: D = |dposg|.
Because the change in heading (dθ) is the same in global or odometry frame, the desired heading
in odometry frame is θ′

o = θo + dθ, and the new desired position in odometry frame (obtained by
moving a distance D in the direction θ′

o is:

x′
o = D ∗ cos(θ′

o) + xo

y′
o = D ∗ sin(θ′

o) + yo .

So now our job is to drive there.

The driver calculates the angle from the robot’s current location to the desired location; then it
uses two feedback loops, like this:

• If the robot is pointed along the desired heading (toward the destination), then it moves forward
with a velocity proportional to the distance to the goal.

• If the robot is not pointed along the desired deading, it rotates with a velocity proportional to
the error in heading.

So, the robot turns to face where it’s going, and then drives there. If, as it’s going along, it finds
that the angular error has gotten too big, it stops and rotates, and then goes again.
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Checkpoint: 1:45 PM

• Discuss the relative merits of doing the low-level driving based on local odometry
versus continuously re-localizing in the map.

1. Using the planner

You can find the following files in SoaR/brains/ps13code:

• CheatPlan.py
• CheatPlanAngle.py
• DriveModule.py
• DriveModuleAngle.py
• GridModule.py
• GridPlan.py
• PlannerModule.py
• PlannerAngleModule.pyc
• PlannerAngleModuleX.py
• search.py
• KJ.py
• KJ.dat
• utilities.py

Now, start up SoaR simulator, using the KJ world, and use CheatPlan.py as the brain. This brain
“cheats,” and instead of using the state estimator to figure out the current pose, it just reads it
straight out of the simulator. We can study the planner’s behavior in this mode first, without
having to worry about the localization.

When it starts up, you’ll see two windows. The first is a familiar grid belief state window. It’s
useful because it shows you the obstacles, but it will never be updated. The second window is blank
to start with, but once the brain starts to run, it shows the current plan. The goal is currently
wired into the CheatPlan.py program to be grid square (7,3). You can, of course, change it.

If you hit step, then the system will start a high-level step (and execute just one low-level one).
It makes a plan, which is shown in the plan window. The green square is centered on the robot’s
actual current pose. The magenta square shows the grid square that it maps on to (the first time
you start up the robot, it will be (5,17)). The dark red square is the first waypoint in the plan, and
will be the goal of the first low-level action. The gold square is the goal, and the dark blue squares
show the rest of the steps in the plan.

Question: What is the depth of the search tree when it finds a solution? What is the branching
factor? Roughly how many nodes will be expanded to find a solution with the expanded list turned
on? How about with it off?

Now, let the program run. You can see the robot turning toward its next destination, moving until
gets there, and stopping. Then the planner is called again and a new plan is drawn in the plan
window and a new high-level action is started. Experiment with moving the robot around in the
simulator and seeing what happens.

You may sometimes see the robot turn around and go backwards. Think about why that might be
happening.
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Question: From the default robot start position and start goal, what plan does it make? Do you
think it’s the best one?

Gridplan

Now, run the robot in the simulator again, but using the GridPlan.py brain. Does the localization
work the way you expect it to in this world? Have the robot drive from the default start to the
goal. How many steps does it actually take? Does it get confused along the way? If the robot gets
stuck, you may have to rescue it by moving it slightly until it can move forward again.

Question: Change the goal so that the robot is happy to be in any one of the four corners of the
maze. This will require changing the code around a bit in a number of places.

You might find it useful to use the Python in construct. The expression x in S returns True if x
is a member of the tuple S. Experiment a bit with it to see how it works.

Checkpoint: 3:00 PM

• Show that you can change the goal from a single state to a set of states, so that the
robot would be satisfied reaching any of the states in the set.

Finally, let’s try it on the real robot. Use GridPlan but go and run it in the real world. Does the
behavior differ from the simulator?

Question: Try starting the robot out in the same pose as you did in the simulator and counting
(either in your head, or by modifying the program) how many high-level steps it takes to get to
the goal. Compare that to what happens in simulation. If they’re different, explain why.

Checkpoint: 3:30 PM

• Discuss ways in which behavior in the simulator differs from behavior in the real robot.

2. Changing the state and action spaces

In the current abstraction of the state space, the robot has no way to take its current heading or
the time it spends rotating into account when it makes a path. If we want to do that, we have to
reformulate the state and action spaces. Let’s consider a new formulation of the state space, to
include the current grid coordinates, as well as the robot’s heading, but with the heading discretized
into the 4 compass directions.

Question: If the x and y coordinates are discretized into 20 values each, and we have 4 possible
headings, what is the size of the whole state space?

Along with changing the state space, we need to change the action space. In this view, we’ll
have three possible actions: move, which moves one square forward in the direction the robot is
currently facing; left, which rotates the robot (approximately) 90 degrees to the left, and right,
which rotates the robot (approximately) 90 degrees to the right. In fact, the left and right actions
should try to rotate the robot to line up to one of the compass directions, even if that requires
rotating somewhat more or less than 90 degrees.
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You can experiment with this model in the simulator. Load the brain CheatPlanAngle.py in the
simulator and try running it again from the default start position. How does it behave?

Question: Go to the file PlannerAngleModuleX.py. You’ll find that the definition for the pro-
cedure plan is missing. It takes an initial state and a goal state, each of which are of the form
(ix, iy, h), where ix and iy are grid indices, and h is in {0, 1, 2, 3}, where 0 stands for north, 1
stands for east, 2 stands for south, and 3 stands for west. The argument gridMap is an object
that has a method free, which when applied to an (x,y) pair of indices, returns True or False.
Write this procedure. It should contain a call to our old friend search.breadthFirst.

Question: Compare the branching factor and depth of planning in this formulation to the previous
one. Would you expect the planner to run faster or slower, in general? Which one do you think
would give you better plans? What would be the result if we used a more fine-grained discretization
of the heading? Can you think of another way to formulate this problem?

Checkpoint: 4:45 PM

• Demonstrate your planner in this new space.

• Discuss the advantages and disadvantages of this formulation over the previous one,
and speculate about another formulation.

3. Optional Exploration: Actions with different costs

Now, what if found that the floor was slippery in the upper part of the world? We might want to
penalize paths that went through the upper locations relative to those that go through the lower
ones.

Change the code to model that. You will have to:

• Add a new uniform cost search procedure to search.py that stores the path cost so far in a
search node and always takes the cheapest node out of the agenda.

• Add a way of specifying the costs of moving from state to state; if our costs are just because of
the conditions of the states themselves, then it might be reasonable to add the cost information
to the map, and put a procedure in GridModule.py that can be queried to get the cost of being
in a state.

Post-lab Due December 5

Hand in answers to all of the questions raised in this lab assignment, written in coherent English
sentences.

Concepts covered in this assignment

Here are the important points covered in this assignment:

• The abstract notion of searching in a finite space can be applied to a real-world robot problem;
the hardest part is the formulation.
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• Different problem formulations can yield different running times and solution qualities.

• Practice with applying search algorithms.


