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MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.099—Introduction to EECS I
Fall Semester, 2006

Assignment for Weeks 11 and 12

Issued: Tuesday, November 14

Because of the holiday, we’re rearranging things slightly. See below for a detailed description of
what exercises are due on what days.

• Pre-lab problems due Thursday, November 16
Read this whole document; Questions 1–10, written

• In-lab exercices for Thursday, November 16
Questions 11–26; 29–34

• Post-lab problems due Tuesday, November 21
Questions 27, 28

• In-lab exercises for Tuesday, November 21
Questions 35–37

• Post-lab problems due Tuesday, November 28
Questions 38–42 and written lab report containing answers to all questions from in-lab exer-
cises (be sure to keep notes!) 11–26, 29–34, 35–37

State estimation

In this lab, we’ll use basic probabilistic modeling to build a system that estimates the robot’s pose,
based on noisy sonar and odometry readings. We’ll start by building up your intuition for these
ideas in a simple simulated world, then we’ll move on to using the real robots.

1. Grid World Simulator

Pre-Lab Due Nov 16

Download the code for this lab, in ps11.zip from the calendar page. In it, you will find DrawingWindowOld.py,
StateEstimationNoisyNN.pyc, MissingCode.py and Lab11.py. Visit Lab11.py in Emacs and
evaluate the buffer.1 You’ll see a command at the end of that file, that says:

w51pp = World(5, 1, (), (), ((2,0),), (), (0,0), perfectSensorModel, perfectMotionModel)

When you evaluate it, you should see a window that looks like this:
1Note that if you want to run this code on a Windows machine, it (annoyingly) doesn’t work if you run it from

Emacs; there’s some kind of disagreement between Emacs and TKinter (the graphics system that Python uses) that
will make Emacs hang if you try it. So, on Windows, just start Python in a shell, and explicitly do from Lab11

import *, and remember to do reload(Lab11) if you change it.
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This is a world with 5 possible “states”, each of which is represented as a square with a colored
border. The possible colors of the borders are white, black, red, green, and blue. In this example,
four squares are white and one is green. There is a small orange rectangle representing the square
that our simulated robot is actually occupying. The inner part of each square is gray; as we’ll
discuss in detail later, how light the square is represents how likely the robot thinks it is that it’s
in that square.

The arguments to the World initialization function are:

• The dimension of the world in x
• The dimension of the world in y
• Four tuples of coordinates, each specifying the location of colored squares. The first list gives

the locations of black squares, the second red, the third green, the last blue. Squares unspecified
in any of those lists are white.2

• A pair of indices specifying the robot’s initial location
• A model of how the sensors work
• A model of how the actions work

So, this world is 5-by-1, with one green square, the robot initially at location (0,0), and perfect
sensor and motion models.

You can issue commands to the robot by typing, if w is a world,

w.north()
w.south()
w.east()
w.west()
w.stay()

Question 1. Just to get the idea of how this works, move the robot east and west a few times
(using w51pp.east() and w51pp.west()), and just take a look at (but don’t be worried if
you don’t understand) what is written on the screen. It shows the actual numeric values
associated with the robot’s belief that it is in each of the squares.

The sensor model, generally speaking, is supposed to specify a probability distribution over
what the robot sees given what state it is in: Pr(Ot|St). In our case the random variable Ot ranges
over white, black, red, green, and blue, and St ranges over all the possible states of the robot (the
different grid squares).

We have made a simplifying assumption, which is that the robot’s observation only depends on
the color of the square it’s standing in; that is, all white squares have the same distribution over

2The expression ((2,0),) makes a tuple that contains a single element, which is itself a tuple that contains 2 and
0. The reason for the extra comma character is so that the outer parentheses are treated as a tuple constructor, not
just as grouping parentheses.
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possible observations. So, we really only need to specify Pr(observedColor |actualColor). In our
program, this set of distributions is specified as a tuple of tuples, where each row corresponds to
a different actual color, in the following order: white, black, read, green, blue. So, for example
m[actual][observed] would give the probability of observing observed in a square that was really
colored actual.

Here’s the model for perfect observations, with no probability of error:

perfectSensorModel = ((1.0, 0.0, 0.0, 0.0, 0.0),
(0.0, 1.0, 0.0, 0.0, 0.0),
(0.0, 0.0, 1.0, 0.0, 0.0),
(0.0, 0.0, 0.0, 1.0, 0.0),
(0.0, 0.0, 0.0, 0.0, 1.0))

Question 2. Give a sensor model in which red and blue are indistinguishable (that is, the robot
is just as likely to see red as to see blue when it is in a red square or a blue square), and
create a world to test it in.

Question 3. Give a sensor model in which red always looks blue, and blue always looks red.

Question 4. Which one of these models is more informative?

Question 5. Do the rows always have to sum to 1? The columns? Why?

Question 6. Given an example situation in which our assumption (that all squares of a given
color have the same error model) is unwarranted.

In a real-world system we probably wouldn’t ever want to have zeros anywhere in the sensor model:
it is important to concede the possibility of error.

The state-transition model specifies a probability distribution over the state at time t + 1,
given the state at time t and the selected action At. That is, Pr(St+1|St, At). This is a slight
generalization of the HMM model we saw in class, since it assumes that there is an “agent” in
the world that is choosing actions; the effects of the action are modeled by essentially selecting a
different transition model depending on the action. So, the next state of the system depends both
on where it was before and the action that was taken. If you were to write this model out as a
matrix, it would be very big: mn2, where n is the number of states of the world and m is the
number of actions.

Often, the transition model can be described more sparsely or systematically. In this particular
world, the robot can try to move north, south, east, or west, or to stay in its current location. We’ll
assume that the kinds of errors the robot makes when it tries to move in a given direction don’t
depend on where the robot actually is (except if it is at the edge of the world), and we’ll further
assume that the transition probabilities to most next states are zero (there’s no chance of the robot
teleporting to the other side of the room, for example).

In this simulator a motion model is a function that takes the robot’s current x, y coordinates, an
action, which is also specified as a set of x, y offsets (so the action to move north would be (0, 1),
for example), and the dimensions of the world. It returns a list of pairs, each of which is a possible
next state (robot coordinates), and the probability of moving to that state.
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Here is a motion model with no noise. There is only one possible resulting state, in which coordinates
of the action are added to those of the robot, and then the result is clipped to be sure it stays
within the confines of the world.

def perfectMotionModel((rx, ry), (ax, ay), xmax, ymax):
def cx(a): return clip(a, 0, xmax-1)
def cy(a): return clip(a, 0, ymax-1)
return (((cx(rx+ax),cy(ry+ay)), 1.0),)

Question 7. Explain what the procedure perfectMotionModel does.

Question 8. Write a motion model that makes the world a torus (that is, a donut, where
there’s no “edge” of the world, it just wraps around to the other side), but where motion is
deterministic. Test it out by moving the robot around.

Question 9. Write the “east wind” motion model, in which, with probability 0.1, the robot
always lands one square to the east of where it should have. Test it out by moving the robot
around.

Belief state update

The robot’s belief state is a probability distribution over possible states of the world. The belief
state at time t represents the probability that the robot is in each of the possible states at time t,
given that it started with some initial uncertainty about where it was (the belief state at time 0,
also sometimes called the prior distribution), and took the sequence of action that it actually took,
and got the sequence of observations it got.

In this world, there is one underlying world state for each square; each of these states has a
probability value assigned to it, and these values sum to 1. In the simulator, the current belief
state is shown by the gray squares, with darker values closer to zero. It is also printed out whenever
you move; in fact it is printed twice: once after the transition update and again after the sensing
update, as explained below. (If you get tired of seeing the printout, you can always type w.verbose
= False to shut it up.)

Just as in the HMM, the belief state is updated in two steps, based on the state transition model
and the observation model.

When the robot takes a transition, we need to update the probability that the robot is in some
state si. If bitold was the old belief state (a whole vector of values) so that bold (si) was the belief
that the robot was in state si, then after the robot takes an action a, its new belief that it is in
state si is:

btrans(si) =
∑
sj

Pr(St+1 = si|St = sj , At = a)bold (sj) .

That is, for each state sj that the robot might have been in before, we add up how likely it is that
the robot was in that state, times the probability that it would have moved from sj to si by trying
to do action a.

Now, the robot makes an observation, o, and we need to readjust the belief state to take this
into account. For each state, si, the sensor model tells us how likely it is that we would have
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made that observation if we were in state si, Pr(Ot+1 = o|St+1 = si). We want to calculate
Pr(St+1 = si|Ot+1 = o), which by Bayes’ rule, is

Pr(Ot+1 = o|St+1 = si) Pr(St+1 = si)
Pr(Ot+1 = o)

.

This isn’t too bad. Pr(Ot+1 = o|St+1 = si) is our sensor model, and Pr(St+1 = si) = btrans(si) is
our belief state after the transition update. But what about the denominator? We can use the law
of total probability, and then the definition of conditional probability, to get:

Pr(Ot+1 = o) =
∑
sj

Pr(Ot+1 = o, St+1 = sj)

=
∑
sj

Pr(Ot+1 = o|St+1 = sj) Pr(St+1 = sj)

This is cool! It means that we can calculate the new belief state from btrans by:

• Multiplying the entry for each si by Pr(Ot+1 = o|St+1 = si)
• Dividing each entry by the sum of all the entries

Question 10. Convince yourself that at the end of this, all of the entries in the belief state will
sum to 1.

In Lab on Nov 16

Practice

This stuff is hard to build up an intuition for. Let’s start by practicing in a world without
noise. In our set-up, w51pp is just such a perfect world. Either make a new instance of it or
do w51pp.reset(), which will set the belief state to (0.2, 0.2, 0.2, 0.2, 0.2). This is often called a
uniform distribution. The robot has no idea where it is, and considers all states equally likely.

Calculate an answer to these questions before trying it in the simulator. If you get a different result
than you expected, convince yourself either that there is a bug in the simulator or why it’s right.
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Question 11. First, what is the robot’s prior belief b(si) for each of the states?

Question 12. If we were to tell the robot to go east, what would the belief state be after
taking the state transition (but not the observation) into account? Start by computing
Pr(St+1 = si|St = sj , east) for all i, j. Now, use this to compute btrans(si) for all i.

Question 13. Now, the robot will see “white” because it’s moving to a white square and there’s
no noise. What will the belief state be after this?

• First, for each state, compute Pr(Ot+1 = white|St+1 = sj) for all states.
• Then compute Pr(Ot+1 = white|St+1 = sj) Pr(St+1 = sj) for each state. Remember

that at this point the Pr(St+1 = sj) we are using is btrans , which is the belief state that
resulted from the transition, not the original prior.

• Now, compute Pr(Ot+1 = white).
• Finally, compute Pr(St+1 = si|Ot+1 = white).

Question 14. Which action could the robot take at this point to make its location completely
unambiguous?

Question 15. Now, make w201pp (un-comment it from the file, or create it from the command
line). Try driving the robot toward the east. Don’t solve the problem numerically, but be
sure you can explain to yourself why the belief state is behaving the way it does.

Noisy Practice

Now, let’s try adding in sensor noise. We’ll use w51ns (un-comment it from the file, or create it
from the command line), which still has perfect motion but noisy sensors.

Question 16. If we were to tell the robot to go east, what would the belief state be after taking
the state transition (but not the observation) into account?

Question 17. Now, what’s the distribution over what the robot predicts that it will see, given
its current belief state? That is, what is Pr(O1|A1 = east)?

Question 18. Compute the next belief state if the robot sees “white”. That is, what is
Pr(S1|O1 = white, A1 = east)?

Question 19. Compute the next belief state if the robot sees “green”.

Question 20. Compute the next belief state if the robot sees “red”.

Question 21. Go east again. (That’s twice now). Explain why, in this particular run, in your
simulation, you got the result you got.

Question 22. What (approximately) would happen if you did the stay action 10 times?

Now, let’s try noisy actions only, using w51na.
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Question 23. What is the belief state after telling the robot to go east, but before it gets the
observation?

Question 24. What is the next belief state if it observes “white”?

Question 25. Move the robot to the green square. What is the belief state now?

Question 26. Can it ever get confused after moving some more? Why or why not?

It’s very important to note that, because this is a simulated world, the exact same noise distributions
are being used to generate the state transitions and observations as are being used to update the
belief state. Of course, in the real world, we can never know the real world’s transition and
observation models exactly, so we have to estimate them. More about this next week.

PostLab due Nov 21

Writing code

Look in the file MissingCode.py. It contains all the definitions from StateEstimationNoisyNN.pyc,
but with these definitions (of methods for class World) missing. Please provide them and run your
code and verify that it computes the same thing as the compiled code we gave you. These are
the computational instantiations of the transition and sensor parts of the belief-state update. (Re-
member to change the import statement at the top of your file to import MissingCode instead of
StateEstimationNoisyNN.

def actionUpdate(self, (ax, ay)):
# Make an empty belief state
newbelief = zeros((self.xdim, self.ydim), Float)
# Your code here, to compute a new belief state
# Use self.motionModel

self.belief = newbelief

def observationUpdate(self, actualObs):
# Your code here, to update the belief state
# Use self.sensorModel

Question 27. Provide your code with some comments, and a demonstration that it works.

Generic state estimator

Implement a completely generic state estimator as a Python class. The initialization function
should take as arguments:

• a tuple of states (these could potentially be integers or strings)
• a tuple of actions
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• a tuple of observations
• a transition model, which is a function that consumes a state (sj), and action (a), and another

state (si), and returns Pr(St+1 = si|St = sj , At = a)
• an observation model, which is a function that consumes a state and an observation, and returns

Pr(Ot+1 = o|St+1 = s).

Your class should have the following methods:

• to set the prior belief state (it might be nice to have special ones for the uniform belief state,
or for one in which you start out with certainty in some state).

• to update the belief state based on an action
• to update the belief state based on an observation
• to print out the belief state

Question 28. Debug your code by working through the first two steps of the copy-machine
diagnosis problem from class. Include a printout showing that it works.

2. Robot Pose Estimation

In Lab on Nov 16

Now it’s time to apply the ideas of state estimation to the real robot. We can test them first in
Pyro, and then on the actual robot. The idea is to put the robot in a space with obstacles, and
give the robot a “map” of the space, so it knows where the obstacles are. The problem is, that
the robot doesn’t know where it is, in that space. The goal is for it, in spite of its noisy odometry
and sensor readings, to localize itself (that is, to figure out where it is located on the map). This
problem is conceptually the same as in our little grid world, but there are lots of complications.

State space First, we have to think about what the underlying state space of the robot is.
Our robots can occupy what is essentially a continuous range of (x, y) positions in the world.
Furthermore, in order to predict the result of an action or the expected observation, we need
to know the robot’s orientation. So, the robot’s state can be described as the product of the
continuous variables x, y, and theta. It is very difficult to represent a completely general probability
distribution over such a space. We’ll take a relatively easy way out by discretizing the space: we’ll
divide each of those state variables into k uniform-sized segments, resulting in a state space that
consists of k3 possible points, uniformly spaced on a three-dimensional grid, embedded in the
underlying continuous space.

Action space Similarly, the action space of the robot is very hard to characterize simply. We
send the robot velocity commands, but it’s hard to predict what the results will be very precisely,
because we don’t know much about the robot’s acceleration, how often our commands are executed,
etc. However, if we sample the odometry reading at time t and again at some future time t+ k, we
have a quantity that we can plausibly treat as the commanded action. It is a (δx, δy, δtheta) that
describes how the robot thinks it changed pose. Of course, we know from lab 1 that the robot’s
odometry is pretty noisy. But we can model that just as we modeled noise in the state transitions
for the grid world. We’ll treat the odometry delta as the “intended” action, and model the actual
action as being a noisy version of the intended one.
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Observation space Finally, we have to model the robot’s sensory abilities. We’ll just model the
sonar sensors, which can give us a lot of information about where the robot is. But we have to
remember that there is noise in the sensor readings and also that many different (x, y, θ) poses of
the robot would yield the same sensor readings. So, for us, an observation will be a vector of 8
sonar readings, 〈o0 . . . o7〉. The sensor model is supposed to give us a probability distribution on
the sonar readings, given the robot’s pose: Pr(〈o0 . . . o7〉|x, y, θ). This seems very difficult, because
the sonar readings are continuous values and because there are eight of them.

Let’s tackle the second problem first. Given the robot’s pose, we can easily compute a nominal
set of sonar readings; let’s call them 〈g0 . . . g7〉 (where g stands for good). These are the readings
we would get if the sonars were perfect, and returned the distance along the ray centered at each
sensor to the nearest obstacle. Just as we did in the simple grid world, we’re going to make the
simplifying assumption that the noisy sonar readings only depend on the nominal readings; that
any two poses of the robot with the same nominal readings will generate the same distribution over
actual readings. So, now our problem is to specify Pr(〈o0 . . . o7〉|〈g0 . . . g7〉).

It’s time for yet another reasonable assumption (you’ll find that the art of making mathematical
models of the real world is figuring out what kinds of assumptions are both mathematically helpful
and realistically plausible). We’ll assume that the amount of noise in one sensor reading is indepen-
dent of the noise in the other sensor readings, given the nominal readings. This would be a good
assumption if the noise is a property of the individual sonar sensors for example; it would be a bad
assumption if it were a more global property of the environment, like having an ultrasonic rodent-
repeller in the room. If we can make this independence assumption, we get a huge simplification
in our problem:

Pr(〈o1 . . . o7〉|x, y, θ) = Pr(〈o1 . . . o7〉|〈g1 . . . g7〉)

=
7∏

i=0

Pr(oi|gi)

For those of you have run across the notion of independence or conditional independence of random
variables, it will make sense that we can convert the joint distribution into a product.

And assuming that all of the sensors have basically the same noise behavior, we only need to specify
a single model: Pr(o|g). This is a probability distribution over a single actual sonar reading o, given
its nominal reading g. We could do this by discretizing the values of o, and providing a probability
for each of those values. But we’d have to discretize the g values, too, and the table starts to get
big. Instead, we’ll keep things continuous and use a Gaussian distribution, which is a way to say
which elements of a continuous interval are more likely than which other ones.

Just to review, the Gaussian (also called normal) distribution has two parameters: the mean µ,
which describes the most likely value, and the variance σ2, which describes how spread out the
distribution is. If we fix σ2 to some value (we could determine this by collecting sonar readings and
doing some statistical analysis) and set µ to be the nominal value g, then this distribution provides
a plausible description of the likelihood of various o values.

So, we’ll assume that the conditional distribution on an observation random-variable O, which has
nominal value g, is N(g, σ2); that is, that it is normally distributed with mean g and variance σ2.
In our model, which you’ll use below, we set σ to 0.5, which makes the variance 0.25. (As you
must know by now, this is a pretty terrible model of the error in the sonars: we should really be
modeling the fact that the sonars often bounce off of walls when the angle is too steep, but we’re
being lazy for now).
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In Simulation

Look in the directory “SoaR/brains/ps12code/”. It should have the following files:

• Gridmodule.py
• GridWander.py
• LPKWanderModule.py
• utilities.py
• shannon20.dat
• empty20.dat
• tutorial10.dat
• tutorial20.dat
• tutorial30.dat

Now, start up SoaR in simulation, using the Tutorial world, and use GridWander.py as the brain.
When it starts up, you’ll see two new windows.

The first window, labeled Belief State, shows the outline of the obstacles in the world, and a grid
of colored squares. Squares that are colored black represent locations that cannot be occupied by
the robot. (Note that the obstacles seem too “fat”: this is because they are grown by the radius of
the robot, which lets us think of the robot just as being a point at the centroid of the real robot.3)
For the purposes of this window, for each (x, y) location, we find the θ∗ value that is most likely,
and then draw a color that’s related to the probability that the robot is at pose (x, y, θ∗). The
colors go in order from more to less likely: red, green, blue, purple. At the absolutely most likely
pose, the robot is drawn, with a nose, in orange. You may also notice, as the belief state evolves, a
small black line; it is drawn starting from the most likely square on the previous step, and shows
the (x, y) component of the odometry reading that was used in the update.

The second window, labeled Pr(o|s), shows, each time a sonar observation o is received,

max
θ

Pr(o|x, y, θ) ,

for each square x, y. That is, it draws a color, as above, that shows how likely the current observation
was in each square, using the most likely possible orientation. It also draws an orange robot with
a “nose” at the location for which this percept was the most likely.

The brain GridWander.py just uses our standard avoid and wander program, but keeps the robot’s
belief state about its pose updated as it does so. In case you’re wondering, the file tutorial20.dat
contains the ideal sensor readings at every x, y, θ pose on a 20 x 20 x 20 grid, assuming that the
walls of the Tutorial World in the simulator are fixed. It takes a long time to compute them, so it’s
better to do it off-line, and then just look them up when we’re running the state update routine.

Run the simulation. Watch the colored boxes, and be sure they make sense to you. Try “kidnap-
ping” the robot (dragging the simulated robot in the window) and see how well the belief state
tracks the change. Currently the belief state is updated every 5 steps of the underlying avoid and
wander behavior. Try changing that (the variable updateInterval in GridWander.py and seeing
what happens.

3This is a somewhat crude version of the the right thing, which is to think about exactly what poses are legal (in
some cases, the robot’s centroid could be at an x, y location without bumping into things if it is at one orientation,
but not another.)
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Question 29. Explain the relationship between the two windows, and why they often start out
similar and diverge over time.

Question 30. What happens when the robot is kidnapped?

Quality of Localization

In the simulator, you can “cheat” and find the true pose of the robot. Inside a brain, this method
will get you the actual pose of the robot (the angle business is due to a mismatch between the
coordinate systems of Pyro and of our maps):

(Note: this code snippet was corrected for Tuesday’s lab.)

def truePose():
simulator = cheat()
bestPose = (simulator.absx, simulator.absy, simulator.absth)
return bestPose

You can convert a pose (just a tuple of (x, y, th)) to a set of indices into the grid by doing

(ix,iy,ith) = robot.gridModule.grid.poseToIndices(pose)

and then you can find the logarithm of the probability associated with that grid square by doing

robot.gridModule.grid.grid[ix,iy,ith]

To convert this number to a probability, use:

import math
math.exp( robot.gridModule.grid.grid[ ix, iy, ith ] )

You can also convert a set of grid indices into a pose using indicesToPose.

The robot’s opinion of the grid square with the highest probability (i.e., the tuple (ix, iy, ith) with
the highest probability of containing the robot) can be found with:

robot.gridModule.grid.bestPose
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Question 31. Think of a good way to measure how well the localization is working, and augment
GridWander.py to compute that measure and print it out. Be sure your measure will be
comparable across grids of different resolutions.

Question 32. Try using grids of different sizes. You can do this by changing tutorialWorld20
in GridWander.py to tutorialWorld10 or tutorialWorld30. How does that affect the
localization performance?

Question 33. We’ve prepared two other environments for you. Try using shannonsWorld20
instead of tutorial20. You’ll have to choose ShannonsWorld in SoaR when you specify
what simulator to use. Try using emptyWorld20 in your program and EmptyWorld in the
simulator. Which of these worlds is easier for the robot to localize in? Why? Could you fix
it with better sensors?

Question 34. If the robot were stationary and kept getting sensor readings and doing state
updates, what would happen to the belief state? Under what circumstances would this be
a good or a bad thing?

On the Robot

In Lab on Nov 21

Using a robot and the available playpens (we’ll have one corresponding to Shannon’s World, which
can be converted to Empty world by removing the box in the middle), gather some logs of sensor
data as the robot moves around in the playpen4 . Take notes while the robot is moving, and draw
a rough picture of the trajectory it followed. Now, replay the logs and watch the state estimation
windows. Have the code print out the most likely state at each state estimation step. Do they
correspond to the actual positions of the robot, according to your notes?

If you find the computational overhead of doing the state estimation is too annoying while gathering
your robot logs, you could actually comment out the state-estimation code while running on the
real robot; since this is a passive part of the program and doesn’t affect the robot’s actions, you’ll
get the same data if you just run the basic avoid and wander behavior. Of course, this is only true
because we have set a switch in SoaR that makes the robot move a fixed amount of time and then
stop on each step, rather than moving continuously until the next move command is received.

Sensor noise We picked the standard deviation used in the sensor model pretty arbitrarily to
be 0.5. Inside the file GridModule.py you will find a statement

sigma = 0.5

How should we set this value? There are actually two sources of variability that are being accounted
for, here. The first is the usual one of how much variability there is in a sonar reading given an

4To gather a log of the sensor data that the robot gathers as it’s moving around, add writeLog("robot.log")

to your brain. This will keep track of all the sensor and odometry readings that your robot got. Now, you can run
your program again, but replace that line with readLog("robot.log"); the robot won’t move, and instead it will
“hallucinate” the sensor readings that it had on the previous run whenever you call sonarDistances() or pose().
This allows you to sit quietly at your desk and print out values, or stare at the graphics windows to really understand
what was going on, rather than trying to figure it out as you chase your robot around the lab.
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actual distance to the wall. In the simulator, there is a little bit of noise on the sensor readings, so
we aren’t getting much variability from that source; but of course there is more of this kind of noise
on the real robot sensors. The other one is due to the discretization: we are treating all the poses
in one cube of the pose space as if they were the same, and there may be significant variability of
the sensor readings from the different poses in that cube.

The right strategy for setting the value would be to sample a bunch of sensor readings, and then do
some statistical analysis to estimate the mean and variance. Instead of doing that, you might try
changing the variance in the model and seeing what effect that has on the quality of the estimates
you get.

Question 35. Why is it that we had to make the robot move only a fixed amount of time per
step, rather than moving until it gets the next move command?

Question 36. Does changing the sensor noise model make the estimation work better? How did
you change it?

Question 37. Think back to lab 2. Is sigma = 0.5 reasonable for sonar measurements on bubble
wrap? What would we need to do to our model if there were no bubble wrap?

General state estimation problems

Diagnosing Pneumonia

Post Lab due Nov 28

Systems that estimate the hidden state of a process are used in a wide variety of applications. One
interesting one is in the management of ventilators (active breathing systems) for intensive-care
patients. One aspect of that problem is that such patients are susceptible to pneumonia, but it is
difficult to diagnose based on a single temporal snapshot of the patient’s vital signs, blood gasses,
etc. Of course, the real process, and the models used, are very complicated. But let’s consider a
wildly oversimplified version below.5

Let the possible states of the patient be: free of bacteria, colonized by bacteria, or pneumonia
from bacteria (includes being colonized). In this model, there are no actions; it is used just for
diagnosis, but not planning. And let the observations (symptoms) be described by the following
observation variables:

• abnormal temperature (yes, no)
• abnormal blood gas (yes, no)
• bacteria in sputum (yes, no)

(There are a huge number of other variables that could be relevant: many other signs and symptoms,
age and general health of the patient, which particular hospital they’re in, how long they’ve been
on a ventilator, what drugs they are on, why they’re in the ICU, etc. A big part of building such
a model is deciding which of these variables are likely to be important).

5This problem was inspired by the paper “A Dynamic Bayesian Network for Diagnosing Ventilator-Associated
Pneumonia in ICU Patients,” by Charitos, van der Gaag, Visscher, Schurink, and Lucas, 2005; but the authors
should in no way be held responsible for the ridiculous simplifications we’ve made in the following.
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The transitions between disease states can be modeled with a probabilistic state transition model,
and the symptoms can be modeled as occuring probabilistically given the underlying disease state
of the patient.

Question 38. Invent a state transition model (we know you probably don’t know anything about
medicine; just write down in English what your assumptions are, and then provide numbers
that are consistent with your explanation.)

Question 39. How many possible observations are there in this domain?

Question 40. Invent a sensor model. Both pneumonia and simply being on a ventilator increase
the likelihood of having abnormal blood gas readings. Pneumonia increases the likelihood
of abnormal temp. Having bacteria in the sputum is a very strong indication of colonization
(but there’s always a chance the test sample was contaminated, for example.)

Question 41. Use your state estimator from the previous section to do state estimation in this
model. Start with a belief state in which it’s certain that the patient is free of bacteria. Try
it with a sequence of observations that you think might be reflective of an actual infection.
Try it again with a sequence of observations that has some abnormal readings, but which
are probably not reflective of an actual infection. Show printouts of the state updates at
each step. Explain why they go the way they do.

Question 42. In fact, this model was constructed so that ICU personnel could decide whether to
administer antibiotic therapy and, if so, against which particular organisms (each of which
will have a different dynamics and observation model). Speculate a little bit on how having
a probabilistic model of the underlying state of a patient could help decide upon a therapy.

Concepts covered in this assignment

Here are the important points covered in this assignment:

• Uncertainty is everywhere! And probability is a good way to model it.

• Even with noisy effectors and weak sensors, it’s often possible to diagnose the underlying
state of a system

• Robot localization can be done robustly, even with noisy sensors and effectors

• A variety of modeling tricks, including discretization and independence assumptions, are
necessary to make the system practical

• Making formal models of real problems is difficult and important

• Programming practice


