
def bin(n):

if n == 0: return ‘0’

elif n==1: return ‘1’

else:

return bin(n // 2) + bin(n % 2)

lists, dictionaries

numbers, strings

DataProcedures

Means of capturing

common patterns

defMeans of abstraction

if, while, …

composition, e.g., can

write 3*(4+7)

Means of combination

+, *, ==, …Primitives

Framework for abstraction

Python dictionaries

• A dictionary is a table where you can store values under
keys.

• The keys can be anything. The values can be anything.

> d={ } #make a new dictionary

> d[17]=‘hello’ #store ‘hello’ under the key 17

> d[‘a’]=‘apple’ #store ‘apple’ under the key ‘a’

> print d[17]+d[‘a’] # retrieve the stored values

‘helloapple’

lists, dictionaries

numbers, strings

DataProcedures

?????Means of capturing

common patterns

defMeans of abstraction

if, while, …

composition, e.g., can

write 3*(4+7)

Means of combination

+, *, ==, …Primitives

Framework for abstraction

lambda creates procedures without

naming them

• lambda x: x+1

– the procedure that adds 1 to its argument

• lambda x,y: x+ 2 * y

– the procedure that adds its first argument to

twice its second argument

• Note that you do not use return

• lambda must be a single expression, not a
block

def sumint(low,high):

return sum(low,

high,

lambda x: x,

lambda x: x+1)

def sumsquares(low,high):

return sum(low,

high,

lambda x: x**2,

lambda x: x+1)

def piSum(low,high):

return sum(low,

high,

lambda x: 1.0/x**2,

lambda x: x+2)

lists, dictionaries

numbers, strings

DataProcedures

higher-order proceduresMeans of capturing

common patterns

defMeans of abstraction

if, while, …

composition, e.g., can

write 3*(4+7)

Means of combination

+, *, ==, …Primitives

Framework for abstraction

Computing square roots

• To compute an approximation to the
square root of x:

– Let g be a guess for the answer

– Compute an improved guess by taking the

average of g and x/g

– Keep improving the guess until it’s good

enough. Where good enough means that g-

squared is close to x.

Computing square roots

• To compute an approximation to the
square root of x:

– Let g be a guess for the answer

– Compute an improved guess by taking the

average of g and x/g

– Keep improving the guess until it’s good

enough. Where good enough means that g is

close to x/g

Computing fixed points

• To compute fixed point of a function f

– Start with a guess

– Keep applying f over and over until the result

doesn’t change very much

def fixedPoint(f,firstGuess):

def close(g1,g2):

return abs(g1-g2)<.0001

def iter(guess,next):

while True:

if close(guess, next):

return next

else:

guess=next

next=f(next)

return iter(firstGuess,f(firstGuess))

Solving f(y)=0 by Newton’s Method

• To compute a solution of f(y)=0

– Let g be a guess for the answer

– Compute an improved guess as

g – f(g)/Df(g)

where Df is the derivative of f

– Keep improving the guess until it’s good

enough.

Newton’s method as a fixed point, and
computing square roots by Newton’s Method

def newtonsMethod(f,firstGuess):

return fixedPoint(

lambda x: x - f(x)/deriv(f)(x),

firstGuess)

def sqrt(x):

return newtonsMethod(

lambda y: y**2 - x,

1.0)

Rights and privileges of first-class

citizens

• May be named by variables

• May be passed as arguments to
procedures

• May be returned as results of procedures

• May be included in data structures

-- Christopher Strachey (1916-1975)

Memoization

def memoize(f):

storedResults={}

def doit(n):

if storedResults.has_key(n):

return storedResults[n]

else:

value = f(n)

storedResults[n] = value

return value

return doit

END

