
6.099, Spring Semester 2006—Lecture Notes – February 14 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.099—Introduction to EECS I
Spring Semester 2006

Lecture Notes – February 14

Capturing Common Patterns with Higher-Order Procedures

Answer to the nanoquiz problem (one of many possible good answers)

def div(n,d):
x = n+1
while True:

if x % d == 0 and not x % d**2 == 0:
return x

x = x + 1

Answer to the homework problem on generating the binary representation of a number:

def bin(n):
if n==0:

return ’0’
elif n==1:

return ’1’
else:

return bin(n/2)+bin(n \% 2)

A procedure for computing the Fibonacci numbers, which generates a tree-recursive process that
has exponential growth.

def fib(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n-1)+fib(n-2)

Three procedures for computing sums

def sumint(low,high):
s=0
x=low
while x < high:

s = s + x
x = x + 1

return s

6.099, Spring Semester 2006—Lecture Notes – February 14 2

def sumsquares(low,high):
s=0
x=low
while x < high:

s = s + x**2
x = x + 1

return s

##pi**2/8
def piSum(low,high):

s=0
x=low
while x < high:

s = s + 1.0/x**2
x = x + 2

return s

The general idea of summation, expressed as a procedure that captures the common pattern:

def sum(low,high,f,next):
s=0
x=low
while x < high:

s = s + f(x)
x = next(x)

return s

The sumint procedure, expressed as a general sum

def sumint(low,high):
def identity(x): return x
def add1(x): return x+1
return sum(low,high,identity,add1)

The three sums, expressed in terms of the general idea of summation, using lambda to avoid having
to name the internal procedures:

def sumsquares(low,high):
return sum(low,

high,
lambda x: x**2,
lambda x: x+1
)

def piSum(low,high):
return sum(low,

high,
lambda x: 1.0/x**2,
lambda x: x+2
)

6.099, Spring Semester 2006—Lecture Notes – February 14 3

Expressing a general method of finding a fixed point of a function f :

def fixedPoint(f,firstGuess):
def close(g1,g2):

return abs(g1-g2)<.0001
def iter(guess,next):

while True:
if close(guess, next):

return next
else:

guess=next
next=f(next)

return iter(firstGuess,f(firstGuess))

Then we can compute square roots as fixed points:

def sqrt(x):
def average(a,b): return (a+b)/2.0
return fixedPoint(lambda g: average(g,x/g),1.0)

Computing derivatives: Given a function f , the derivative Df is another function. Therefore D
itself is a function whose value is a function:

def deriv(f):
dx=0.0001
return lambda x:(f(x+dx)-f(x))/dx

We can write this equivalently, without using lambda:

def deriv(f):
dx=0.0001
def d(x):

return (f(x+dx)-f(x))/dx
return d

In either case, if we apply deriv to a procedure, the result is another procedure, that we can then
apply to a number, e.g.,

deriv(square)(10)

produces 20 (approximately) becasuse the derivative of x 7→ x2 is x 7→ 2x.

Once we can express derivative, we can express Newton’s method:

def newtonsMethod(f,firstGuess):
return fixedPoint(

lambda x: x - f(x)/deriv(f)(x),
firstGuess)

and we can express computing square roots as an application of Newton’s method:

def sqrt(x):
return newtonsMethod(

lambda y: y**2 - x,
1.0)

6.099, Spring Semester 2006—Lecture Notes – February 14 4

Rights and privileges of first-class citizens in programming languages (Christopher
Strachey)

• May be named by variables

• May be passed as arguments to procedures

• May be returned as results of procedures

• May be included in data structures

Memoization to avoid redundant computation:

def memoize(f):
storedResults={}
def doit(n):

if storedResults.has_key(n):
return storedResults[n]

else:
value = f(n)
storedResults[n] = value
return value

return doit

Now we can remove redundant computaton for fib by executing

fib = memoize(fib)

