






\%
File Edit Options Buffers Tools Complete In/Out Signals Help


```
>>> 27
27
>>> 63.28
63.280000000000001
>>> 'now'
'now'
>>> 27 + 63.28
90.280000000000001
>>> 'now' + 'here'
```

' nowhere'
>>>





## Computing square roots

- To compute an approximation to the square root of $x$ :
- Let $g$ be a guess for the answer
- Compute an improved guess by taking the average of $g$ and $x / g$
- Keep improving the guess until it's good enough.

```
F
File Edit Options Buffers Tools Complete In/Out Signals Help
```



```
def goodEnough (guess,x):
    return abs(x-square(guess)) < .00001
def improve(guess,x):
    return average(guess, x/guess)
def sqrtIter(guess,x):
    while not(goodEnough(guess,x)):
        guess=improve(guess,x)
    return guess
def sqrt(x):
    return sqrtIter(1.0,x)
-1: ** myprograms.py All L7 (Eython)----Sun Feb 5 4:39 PM
>>> sqrt(2)
1.4142156862745097
>>>
```

```
def sqrt(x):
    def goodEnough(guess):
        return abs(x-square(guess))< .00001
    def improve(guess):
        return average(guess, x/guess)
    def iter(guess):
        while not(goodEnough(guess)):
            guess=improve(guess)
        return guess
    return iter(1.0)
```

```
File Edit Options Buffers Tools Complete In/Out Signals Help
```



```
def expt(b,e):
    if e==0:
            return 1
    else:
        return b * expt (b,e-1)
\square
-1:** myprograms.py All L6 (Python)----Sun Eeb 5 6:03PM
>>> expt(7,33)
expt(7,33)
7730993719707444524137094407L
>>> 
```

```
def fastexp(b,e):
    if e==0:
        return 1
    elif e % 2 == 1:
        return b * fastexp(b,e-1)
    else:
        return square(fastexp(b,e/2))
```


## Order of growth

For a process that uses resources $R(n)$ for a problem of size $n$, we say that $R(n)$ has order of growth $\Theta(f(n))$ if there are positive constants $k_{1}$ and $k_{2}$ independent of $n$ such that

$$
k_{1} f(n) \leq R(n) \leq k_{2} f(n)
$$

for $n$ sufficiently large


## Math Quiz

$$
\begin{array}{rlr}
2 \times 6 & =1 & \bmod 11 \\
2 \times 6 \times 5 & =5 & \bmod 11 \\
2^{3} & =1 & \bmod 7 \\
2^{300} & =1 & \bmod 7 \\
=\left(2^{3}\right)^{100}=1^{100}=1
\end{array}
$$

```
def expmod(b,e,m):
```

    if \(e==0\) :
        return 1
    elif e \(\% 2==1\) :
        return (b * expmod \((\mathrm{b}, \mathrm{e}-1, \mathrm{~m})\) ) \% \(m\)
    else:
        return \(\operatorname{square}(\operatorname{expmod}(b, e / 2, m)) \% m\)
    'Expmod lets you compute powers modulo

## m in order $\log \mathrm{n}$ steps

- Problem: Given $a$ and $p$ and $x$, find $y$ such that

$$
a^{x}=y(\bmod p)
$$

- Use expmod
- Example: If $x$ is a 500 -digit number, we can compute $a^{x}(\bmod p)$ in about $1700\left(=\log _{2} 10^{500}\right)$ steps.


## There's no shortcut for computing logarithms $\bmod p$

- Problem: Given $a$ and $p$ and $y$, find $x$ such that

$$
a^{x}=y(\bmod p)
$$

- As far as anyone knows, there are no shortcuts.
- The only way to do this is essentially by bruteforce search among all possibilities for $x$.
- Example: If $p$ is a 500 -digit number, finding $x$ so that

$$
a^{x}=y(\bmod p)
$$

requires about $10^{500}$ steps.

## Secret communication on public channels

- Alice and Bob want to create a shared secret number that they can use as a cryptographic key. But all of their communications can be overhead.
- There is a great idea
- Alice and Bob can create a shared secret key, even if they have never met before and have made no prior arrangements, and even if everyone can eavesdrop on all their communications ...
- ... including eavesdropping on the communications Alice and Bob use to establish the key!



## Diffie-Hellman Key Agreement

$$
\text { Start with public, standard values of } p \text { and } a
$$

Alice


Pick a secret number $S_{A}$ Compute $\quad P_{A}=a^{S_{A}} \bmod p$ Shout out $P_{A}$
Compute $P_{B}{ }^{S_{A}} \bmod p$


Pick a secret number $S_{B}$ Compute $P_{B}=a^{S_{B}} \bmod p$
Shout out $P_{B}$
Compute $P_{A}{ }^{S_{B}} \bmod p$

Main point: Alice and Bob have computed the same number, because

$$
\left(P_{B}^{S_{A}}=\left(a^{S_{B}}\right)^{S_{A}}=a^{S_{B} S_{A}}=\left(a^{S_{A}}\right)^{S_{B}}=P_{A}^{S_{B}}\right) \quad \bmod p
$$

Alice and Bob can now use this number as a shared key for encrypted communication
Eavesdroppers know $P_{A}=a^{S_{A}} \bmod p$ and $P_{B}=a^{S_{B}} \bmod p$
But going from these to $a^{S_{A} S_{B}} \bmod p \quad$ requires computing logarithms $\bmod p$, as far as anyone knows

## Basic result of Diffie-Hellman

- As a consequence, someone eavesdropping on Alice and Bob would require exponentially more computer power to break the system, than Alice and Bob require to establish a key.

|  | Procedures | Data |
| :--- | :--- | :--- |
| Primitives | $+,{ }^{*},==, \ldots$ | numbers, strings |
| Means of <br> combination | if, while, ... <br> composition, e.g., <br> can write $3^{*}(4+7)$ | lists |
| Means of <br> abstraction | def | $? ?$ |
| Capturing <br> common patterns | $? ? ?$ | $? ?$ |



END


