
6.081, Fall Semester 2006—Lecture Notes – September 12 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.081—Introduction to EECS I
Fall Semester 2006

Lecture Notes – September 12

Elements of Programming

Some simple Python procedures

def square(x):
return x*x

def average(a,b):
return (a + b) / 2.0

def meanSquare(a,b):
return average(square(a), square(b))

A procedure for computing square roots:

def goodEnough(guess, x):
return abs(x-square(guess)) < .00001

def improve(guess,x):
return average(guess, x/guess)

def sqrtIter(guess,x):
while not(goodEnough(guess,x)):

guess=improve(guess,x)
return guess

def sqrt(x):
return sqrtIter(1.0,x)

Another version of the square root procedure, that uses block structure

def sqrt(x):
def goodEnough(guess):

return abs(x-square(guess)) < .00001
def improve(guess):

return average(guess, x/guess)
def iter(guess):

while not(goodEnough(guess)):
guess=improve(guess)

return guess
return iter(1.0)

6.081, Fall Semester 2006—Lecture Notes – September 12 2

Computing powers, be

def expt(b,e):
if e==0:

return 1
else:

return b*expt(b,e-1)

This results in a linear time process

Fast exponentiation:

def fastexp(b,e):
if e == 0:

return 1
elif e % 2 == 1:

return b * fastexp(b,e-1)
else:

return square(fastexp(b,e/2))

This results in a logarithmic time process

Orders of growth:

For a process that uses resources R(n) for a problem of size n, we say that R(n) has order of growth
Θ(f(n)) if there are positive constants k1 and k2 independent of n such that

k1f(n) ≤ R(n) ≤ k2f(n)

Computing powers modulo m, be (mod m)

def expmod(b,e,m):
if e == 0:

return 1
elif e % 2 == 1:

return (b * expmod(b,e-1,m)) % m
else:

return square(expmod(b,e/2)) % m

For the problem: Given a and p and x, find y such that ax = y (mod p) can be solved in time
logarithmic in x.

But there is no known shortcut for the inverse discrete logarithm problem: Given a and p and y, find
x such that ax = y (mod p). Solving this problem takes exponentially more time than computing
powers modulo p. (If p is a prime number.)

This fact is the basis of Diffie-Hellman key agreement, which makes it possible to have secret
communication on public channels.

