

Introduction to Algorithms: 6.006 Problem Set 6
Massachusetts Institute of Technology April 19, 2012

Problem Set 6
This problem set is due Wednesday, May 2 at 11:59PM.

Solutions should be turned in through the course website. You must enter your solutions
by modifying the solution template (in Python) which is also available on the
course website. The grading for this problem set will be largely automated, so it is
important that you follow the specific directions for answering each question.

For multiple-choice and true/false questions, no explanations are necessary: your grade will
be based only on the correctness of your answer. For all other non-programming questions,
full credit will be given only to correct solutions which are described clearly and concisely.

Programming questions will be graded on a collection of test cases. Your grade will be based
on the number of test cases for which your algorithm outputs a correct answer within time
and space bounds which we will impose for the case. Please do not attempt to trick the
grading software or otherwise circumvent the assigned task.

1. Dynamic programming analysis (20 points)

For each of the following recursions, all of which take exponential time to compute
naively, answer the following questions. You may assume that the functions can be
computed in constant time when any of the arguments are 0.

i. In terms of n, how many distinct subproblems are ever solved to evaluate the
function with arguments bounded by n?

ii. If we use memoization to speed up the computation of the recurrence, what
is time needed to evaluate the function?

(a) A function defined by the Fibonacci recursion:

fib(n) = fib(n− 1) + fib(n− 2)

(b) A function defined by Pascal’s recursion:

choose(n, k) = choose(n− 1, k) + choose(n− 1, k − 1)

where choose(n, k) = 0 if k > n.

(c) A function defined by the Bell numbers recursion:

bell(n) =
n−1∑
k=0

choose(n, k) · bell(k)

where the binomial coefficients are already computed (using the recursion above).

2 Problem Set 6

(d) A function defined by the recursion:

game(n, k) = max
k
2
≤i≤k

(−1)n · game(n− 1, i)

where game(n, k) = 0 if k > n.

(e) A function defined by the recursion:

HALF(i, j) =

 j−i
2∑

k=0

HALF

(
i + k, i + k +

j − i

2

)2

where 0 ≤ i ≤ j ≤ n. (Hint: think of [i, j] as an interval. What do the recursive
calls look like?)

Solution Format:

Your choices for this problem are:

A. Θ(1)

B. Θ(log n)

C. Θ(n)

D. Θ(n log n)

E. Θ(n2)

F. Θ(n2 log n)

G. Θ(n3)

So your solution to each part of this problem should be a single character in the set
set([’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’]).

Problem Set 6 3

2. A game of DAGs (30 points)

You are given a directed acyclic graph, in the same adjacency list format as the graph
from Problem Set 4. Silvio and Costis are playing a game on this graph.

The game begins at a node s in the graph. The two players alternate taking turns, with
Silvio going first. On a player’s turn, he chooses a vertex which is a direct descendent
of the vertex chosen in the previous round (e.g., on Silvio’s first turn, he chooses any
vertex which s has an edge to). A player loses if he has no legal moves, which happens
when the other player chooses a sink.

Fill in the code for a function find winning nodes(graph) which returns a list of the
start nodes s in the graph from which Silvio wins, assuming that both players play
optimally.

graph = {0: [1, 2], 1 : [2, 3], 2 : [3], 3 : []}

If s is 0, Silvio chooses 1 or 2, so Costis chooses 3 and wins.

If s is 1 or 2, Silvio chooses 3 and wins.

If s is 3, Silvio immediately loses.

set(find_winning_nodes(graph)) == set([1, 2])

4 Problem Set 6

3. Optimal parenthesization (40 points)

Given an array of n positive (but not necessarily integral) numbers, your goal is to
determine the largest value that can be obtained by interspersing parentheses, multi-
plication signs, and addition signs between them.

Fill in the code for a function find largest value(numbers) for this problem. Your
code should be able to handle a 100-element list in about a second and pass the
following test cases:

An optimal parenthesization: (1 + 2) * (3 * (4 * 5)) = 180

abs(find_largest_value([1, 2, 3, 4, 5]) - 180) < 0.001

An optimal parenthesization: 0.8 + (0.5 + (0.3 + 0.5)) = 2.1

abs(find_largest_value([0.8, 0.5, 0.3, 0.5]) - 2.1) < 0.001

An optimal parenthesization: (0.8 + 1.5) * (1.6 + 0.5) = 4.83

abs(find_largest_value([0.8, 1.5, 1.6, 0.5]) - 4.83) < 0.001

Problem Set 6 5

4. MIT’s football team (40 points)

The Institute wants to develop a set of robots that can defeat Harvard’s football team
in a head-to-head comparison. Harvard’s team is composed of n players, each of which
have a strength ai and a speed bi.

A robot majorizes a human if it is at least as strong and at least as fast as the human.
It costs MIT a · b thousand dollars to create a robot which has strength a and speed b,
and MIT would like to have at least one robot that majorizes each player on Harvard’s
team. Describe an efficient algorithm to compute the minimal amount of money needed
to create a set of robots that satisfies this condition.

Example: If Harvard’s team has three players with strength-speed pairs (10, 1), (2, 9),
and (1, 10), the most cost-efficient team of robots is the team of two: (10, 1) and (2, 10).
This team costs $30,000.

Solution Format:

Fill in the string answer for problem 4 with your solution.

